Skip to main content

Two Control Works to Counteract the Inception of Debris Avalanches

  • Conference paper
  • First Online:
Geotechnical Research for Land Protection and Development (CNRIG 2019)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 40))

Included in the following conference series:

  • 1580 Accesses

Abstract

Debris avalanches develop along open slopes, with significant lateral spreading, bed entrainment and flow-like motion associated to large runout distances. Recent numerical methods enhanced the simulation of the inception and propagation mechanisms with reasonable computational times and accurate description of the main kinematic variables such as height and velocity of the mobilised volumes. In this paper, a Smooth Particle Hydrodynamic (SPH) approach is applied to the simulation of propagation scenarios of differently-triggered debris avalanches in presence of two types of engineered slopes. The first option is the installation of a series of baffles in different geometrical combinations; whereas, the second alternative is the implementation of non-erodible zones. Both intervention types are conceived for the hillslope areas, so that the inception of debris avalanche would be limited since the very early stages of the phenomenon. A frictional rheological model is used, and also the role of time-space variable pore water pressures is considered. The discussion of the numerical results focuses on the modifications in the landslide dynamics induced by the two control work options, aimed to discuss the feasibility of such types of interventions in steep slopes prone to debris avalanche triggering and propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blanc T, Pastor M, Drempetic MSV, Haddad B (2011) Depth integrated modelling of fast landslide propagation. Eur J Environ. Civil Eng. 15(sup1):51–72

    Article  Google Scholar 

  • Cascini L, Cuomo S, Pastor M, Sorbino G, Piciullo L (2014) SPH run-out modelling of channelised landslides of the flow type. Geomorphology 214:502–513

    Article  Google Scholar 

  • Cuomo S, Pastor M, Capobianco V, Cascini L (2016) Modelling the space–time evolution of bed entrainment for flow-like landslides. Eng Geol 212:10–20

    Article  Google Scholar 

  • Cuomo S, Pastor M, Cascini L, Castorino GC (2014) Interplay of rheology and entrainment in debris avalanches: a numerical study. Can Geotech J 51(11):1318–1330

    Article  Google Scholar 

  • Pastor M, Blanc T, Haddad B, Petrone S, Morles MS, Drempetic V, Cuomo S (2014) Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 11(5):793–812

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cuomo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cuomo, S., Petrosino, S. (2020). Two Control Works to Counteract the Inception of Debris Avalanches. In: Calvetti, F., Cotecchia, F., Galli, A., Jommi, C. (eds) Geotechnical Research for Land Protection and Development. CNRIG 2019. Lecture Notes in Civil Engineering , vol 40. Springer, Cham. https://doi.org/10.1007/978-3-030-21359-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21359-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21358-9

  • Online ISBN: 978-3-030-21359-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics