Skip to main content

Validation of SHACL Constraints over KGs with OWL 2 QL Ontologies via Rewriting

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11503))

Included in the following conference series:

Abstract

Constraints have traditionally been used to ensure data quality. Recently, several constraint languages such as SHACL, as well as mechanisms for constraint validation, have been proposed for Knowledge Graphs (KGs). KGs are often enhanced with ontologies that define relevant background knowledge in a formal language such as OWL 2 QL. However, existing systems for constraint validation either ignore these ontologies, or compile ontologies and constraints into rules that should be executed by some rule engine. In the latter case, one has to rely on different systems when validating constrains over KGs and over ontology-enhanced KGs. In this work, we address this problem by defining rewriting techniques that allow to compile an OWL 2 QL ontology and a set of SHACL constraints into another set of SHACL constraints. We show that in the general case the rewriting may not exists, but it always exists for the positive fragment of SHACL. Our rewriting techniques allow to validate constraints over KGs with and without ontologies using the same SHACL validation engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.w3.org/2001/sw/wiki/ShEx.

  2. 2.

    https://www.stardog.com/.

  3. 3.

    https://www.topquadrant.com/technology/shacl/.

  4. 4.

    https://www.w3.org/TR/shacl/.

  5. 5.

    Recall that for query rewriting the input is a query q and ontology \(\mathcal {O}\) and the output is another query \(q'\) such that for any database D so-called certain answers of q over \(\langle \mathcal {O}, \mathcal {D} \rangle \) coincide with the answers of \(q'\) over \(\mathcal {D} \) alone [9].

  6. 6.

    The axiom of the kind \(V \sqsubseteq \exists R.C\) in syntactically not in \({\textit{DL-Lite}_R}{}\) but it can be expressed using a “fresh” role \(R_1\) and three axioms: \(V \sqsubseteq \exists R_1\), \(R_1 \sqsubseteq R\) and \(\exists R^{-}_1 \sqsubseteq C\).

  7. 7.

    In this entailment we consider \(\mathcal {M}\) as an infinite conjunction of atoms.

References

  1. Freebase: an open, shared database of the world’s knowledge. freebase.com/

  2. Google KG. google.co.uk/insidesearch/features/search/knowledge.html

  3. W3C: OWL 2 Web Ontology Language. www.w3.org/TR/owl2-overview/

  4. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured Data and XML. Morgan Kaufmann, Burlington (1999)

    Google Scholar 

  5. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Boston (1995)

    MATH  Google Scholar 

  6. Arenas, M., Grau, B.C., Kharlamov, E., Marciuska, S., Zheleznyakov, D.: Faceted search over RDF-based knowledge graphs. J. Web Semant. 37–38, 55–74 (2016)

    Article  Google Scholar 

  7. Arenas, M., Gutiérrez, C., Pérez, J.: Foundations of RDF databases. In: Tessaris, S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 158–204. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2_4

    Chapter  Google Scholar 

  8. Boneva, I., Labra Gayo, J.E., Prud’hommeaux, E.G.: Semantics and validation of shapes schemas for RDF. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 104–120. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_7

    Chapter  Google Scholar 

  9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. JAR 39, 385–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DLLite knowledge bases. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 112–128. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_8

    Chapter  Google Scholar 

  11. Cheng, G., Kharlamov, E.: Towards a semantic keyword search over industrial knowledge graphs (extended abstract). In: IEEE Big Data, pp. 1698–1700 (2017)

    Google Scholar 

  12. Corman, J., Reutter, J.L., Savković, O.: Semantics and validation of recursive SHACL. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 318–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_19

    Chapter  Google Scholar 

  13. Corman, J., Reutter, J.L., Savkovic, O.: Semantics and validation of recursive SHACL (extended version). Technical report KRDB18-1, KRDB Research Center, Free University of Bozen-Bolzano (2018). https://www.inf.unibz.it/krdb/pub/tech-rep.php

  14. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

    Article  Google Scholar 

  15. Ekaputra, F.J., Lin, X.: SHACL4p: SHACL constraints validation within Protégé ontology editor. In: ICoDSE (2016)

    Google Scholar 

  16. Fan, W., Fan, Z., Tian, C., Dong, X.L.: Keys for graphs. PVLDB 8(12), 1590–1601 (2015)

    Google Scholar 

  17. Fan, W., Wu, Y., Xu, J.: Functional dependencies for graphs. In: SIGMOD, pp. 1843–1857 (2016)

    Google Scholar 

  18. Hansen, P., Lutz, C., Seylan, I., Wolter, F.: Efficient query rewriting in the description logic EL and beyond. In: IJCAI, pp. 3034–3040 (2015)

    Google Scholar 

  19. Horrocks, I., Giese, M., Kharlamov, E., Waaler, A.: Using semantic technology to tame the data variety challenge. IEEE Internet Comput. 20(6), 62–66 (2016)

    Article  Google Scholar 

  20. Kharlamov, E., et al.: Capturing industrial information models with ontologies and constraints. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 325–343. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_30

    Chapter  Google Scholar 

  21. Kharlamov, E., et al.: SOMM: industry oriented ontology management tool. In: ISWC Posters & Demos (2016)

    Google Scholar 

  22. Kharlamov, E., et al.: Ontology based data access in Statoil. J. Web Semant. 44, 3–36 (2017)

    Article  Google Scholar 

  23. Kharlamov, E., et al.: Semantic access to streaming and static data at Siemens. J. Web Semant. 44, 54–74 (2017)

    Article  Google Scholar 

  24. Kharlamov, E., Martín-Recuerda, F., Perry, B., Cameron, D., Fjellheim, R., Waaler, A.: Towards semantically enhanced digital twins. In: IEEE Big Data, pp. 4189–4193 (2018)

    Google Scholar 

  25. Kharlamov, E., et al.: Towards simplification of analytical workflows with semantics at Siemens (extended abstract). In: IEEE Big Data, pp. 1951–1954 (2018)

    Google Scholar 

  26. Kharlamov, E., et al.: Diagnostics of trains with semantic diagnostics rules. In: Riguzzi, F., Bellodi, E., Zese, R. (eds.) ILP 2018. LNCS (LNAI), vol. 11105, pp. 54–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99960-9_4

    Chapter  Google Scholar 

  27. Kharlamov, E., et al.: Semantic rules for machine diagnostics: execution and management. In: CIKM, pp. 2131–2134 (2017)

    Google Scholar 

  28. Kharlamov, E., et al.: Finding data should be easier than finding oil. In: IEEE Big Data, pp. 1747–1756 (2018)

    Google Scholar 

  29. Kharlamov, E., Zheleznyakov, D.: Capturing instance level ontology evolution for DL-Lite. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 321–337. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_21

    Chapter  Google Scholar 

  30. Kharlamov, E., Zheleznyakov, D., Calvanese, D.: Capturing model-based ontology evolution at the instance level: the case of DL-Lite. J. Comput. Syst. Sci. 79(6), 835–872 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Knublauch, H., Ryman, A.: Shapes constraint language (SHACL). W3C Recommendation, vol. 11, no. 8 (2017)

    Google Scholar 

  32. König, M., Leclère, M., Mugnier, M., Thomazo, M.: Sound, complete and minimal UCQ-rewriting for existential rules. Semant. Web 6(5), 451–475 (2015)

    Article  Google Scholar 

  33. Mehdi, G., et al.: Semantic rule-based equipment diagnostics. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 314–333. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_29

    Chapter  Google Scholar 

  34. Mehdi, G., et al.: SemDia: semantic rule-based equipment diagnostics tool. In: CIKM, pp. 2507–2510 (2017)

    Google Scholar 

  35. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational databases. Web Semant. Sci. Serv. Agents World Wide Web 7(2), 74–89 (2009)

    Article  Google Scholar 

  36. Patel-Schneider, P.F.: Using description logics for RDF constraint checking and closed-world recognition. In: AAAI (2015)

    Google Scholar 

  37. Ringsquandl, M., et al.: On event-driven knowledge graph completion in digital factories. In: IEEE Big Data, pp. 1676–1681 (2017)

    Google Scholar 

  38. Savkovic, O., Calvanese, D.: Introducing datatypes in DL-Lite. In: ECAI, pp. 720–725 (2012)

    Google Scholar 

  39. Savković, O., et al.: Semantic diagnostics of smart factories. In: Ichise, R., Lecue, F., Kawamura, T., Zhao, D., Muggleton, S., Kozaki, K. (eds.) JIST 2018. LNCS, vol. 11341, pp. 277–294. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04284-4_19

    Chapter  Google Scholar 

  40. Soylu, A., et al.: OptiqueVQS: a visual query system over ontologies for industry. Semant. Web 9(5), 627–660 (2018)

    Article  Google Scholar 

  41. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of WWW, pp. 697–706 (2007)

    Google Scholar 

  42. Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity constraints in OWL. In: AAAI (2010)

    Google Scholar 

  43. Zheleznyakov, D., Kharlamov, E., Horrocks, I.: Trust-sensitive evolution of DL-Lite knowledge bases. In: AAAI, pp. 1266–1273 (2017)

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by the SIRIUS Centre, Norwegian Research Council project number 237898; by the Free University of Bozen-Bolzano projects QUEST, ROBAST and ADVANCED4KG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ognjen Savković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Savković, O., Kharlamov, E., Lamparter, S. (2019). Validation of SHACL Constraints over KGs with OWL 2 QL Ontologies via Rewriting. In: Hitzler, P., et al. The Semantic Web. ESWC 2019. Lecture Notes in Computer Science(), vol 11503. Springer, Cham. https://doi.org/10.1007/978-3-030-21348-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21348-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21347-3

  • Online ISBN: 978-3-030-21348-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics