Skip to main content

Using Remote Sensing to Predict Soil Properties in Iraq

  • Chapter
  • First Online:
Environmental Remote Sensing and GIS in Iraq

Part of the book series: Springer Water ((SPWA))

  • 736 Accesses

Abstract

Soil composed of different percentages of solid, liquid and gasses materials. In reality, the percentages of these components vary tremendously, and the determination the precise amount for each fraction on world wide scale is expensive and time-consuming. The success of the precision agriculture depends strongly upon an efficient and accurate method for in-field soil property determination. For that reason, some helpful techniques were developed in order to predict and mapping soil components including remote sensingĀ (RS) and Geographical Information Systems (GIS). Different methodologies have been used for the estimation of soil parameters, based on different remote sensing sensors and techniques. Many studies in soil science have used both RS bare-soil images and spectroscopic reflectance of soil samples for soil survey, mapping, and quantitative soil-property characterization. This chapter aims to demonstrate the development of some statistical models to predict some components of Iraqi soils using Remote sensing techniques including spectral indices and electromagnet induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas AH (2010) Characterization and classification of soil units of North Kut project and prediction of some soil physical properties by using GIS and Remote Sensing. PhD thesis, College of Agriculture, Baghdad University, Iraq

    Google ScholarĀ 

  • Abbas AH, Muhaimeed AS (2012a) Prediction of infiltration and saturated hydraulic conductivity of the soils in the Iraqi central alluvial plain using remote sensing technique. J Iraqi Sci 53(4):971ā€“976

    Google ScholarĀ 

  • Abbas AH, Muhaimeed AS (2012b) Prediction of some soil water content parameters using remote sensing & GIS techniques. Iraqi J Agric Sci 43(4):13ā€“22

    Google ScholarĀ 

  • Agbu PA, Fehrenbacher DJ, Jansen IJ (1990) Soil property relationships with SPOT satellite digital data in east central Illinois. Soil Sci Soc Am J 54(3):807ā€“812

    ArticleĀ  Google ScholarĀ 

  • Aldakheel YY (2011) Assessing NDVI spatial pattern as related to irrigation and salinity management in Al-Hassa Oasis, Saudi Arabia. J Indian Soc Remote Sens 39(2):171ā€“180

    Google ScholarĀ 

  • Allbed A, Kumar L (2013) Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review. ARS 2:373ā€“385

    ArticleĀ  Google ScholarĀ 

  • Al-Shiakly FA (2001) Testing remote sensing techniques in determining soil units of different gypsum content and forecasting some of their features. Ms. thesis, Agriculture College, Baghdad University, Iraq

    Google ScholarĀ 

  • Barnes EM et al (2003) Remote- and ground-based sensor techniques to map soil properties. Photogramm Eng Remote Sens 69(6):3619ā€“3630

    ArticleĀ  Google ScholarĀ 

  • Ben-Dor E, Banin A (1994) Visible and near-infrared (0.4ā€“1.1Ā Ī¼m) analysis of arid and semiarid soils. Remote Sens Environ 48(3):261ā€“274

    Google ScholarĀ 

  • Ben-Dor E, Banin A (1995) Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci Soc Am J 59(2):364ā€“372

    ArticleĀ  Google ScholarĀ 

  • Browning DM, Duniway MC (2011) Digital soil mapping in the absence of field training data: a case study using terrain attributes and semi automated soil signature derivation to distinguish ecological potential. Appl Environ Soil Sci 42:1904ā€“1910

    Google ScholarĀ 

  • Buringh P (1960) Soils and soil conditions in Iraq. Ministry of Agriculture of Iraq, 337 p

    Google ScholarĀ 

  • Chang CW, Laird DA (2002) Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci 167(2):110ā€“116

    ArticleĀ  Google ScholarĀ 

  • Chenu C (2004) Soil phases: the organic solid phase. In: Galcomo C, Scalenghe R (eds) Soils: basic concepts and future challenges. Cambridge University Press, Cambridge

    Google ScholarĀ 

  • Coleman TL, Agbu PA, Montgomery OL (1993) Spectral differentiation of surface soils and soil properties is it possible from space platform? Soil Sci 55:283ā€“293

    ArticleĀ  Google ScholarĀ 

  • Dalal RC, Henry RJ (1986) Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectroscopy. Soil Sci Soc Am J 50(1):120ā€“123

    ArticleĀ  Google ScholarĀ 

  • Dematte JAM, Gama MAP, Cooper M, Araui JC, Nanni MR, Fiorio PR (2004) Effect of fermentation residue on the spectral reflectance properties of soils. Geoderma 1203ā€“4:187ā€“200

    ArticleĀ  Google ScholarĀ 

  • FAO (2011) Country pasture/forage resource profiles: Iraq. FAO, Rome, Italy, p 34

    Google ScholarĀ 

  • FAOā€”UNDP (1987) Soil quality considerations in the selection of sites for aquaculture. Nigerian institute for oceanography and marine research. Project, RAT/82/009

    Google ScholarĀ 

  • Farifteh J, Farshad A, George RJ (2006) Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma 130(3ā€“4):191ā€“206

    ArticleĀ  Google ScholarĀ 

  • Ghabour T, Daels L (1993) Mapping and monitoring soil salinity of ISSN. Egypt J Soil Sci 33(4):355ā€“370

    Google ScholarĀ 

  • Huete AR (1988) A soil adjusted vegetation index (SAVI). Remote Sens Environ 25:295ā€“309

    ArticleĀ  Google ScholarĀ 

  • Huete AR, Liu HQ, Batchily K, van Leeuwen W (1997) A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sens Environ 59:440ā€“451

    ArticleĀ  Google ScholarĀ 

  • Kaufman YJ, Tanre D (1992) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans Geosci Remote Sens 30:261ā€“270

    Google ScholarĀ 

  • Lamb JA, Fernandez FG, Kaiser DE (2014) Understanding nitrogen in soil. University of Minnesota Extension

    Google ScholarĀ 

  • Lhissou R, El Harti A, Chohmani K (2014) Mapping soil salinity in irrigated land using optical remote sensing data. Aust J Soil Sci 3:82ā€“88, 913ā€“917

    Google ScholarĀ 

  • Matinfar HR et al (2013) Dedection of soil salinity changes and mapping land cover types based upon remotely sensed data. Arab J Geosci 6(3):6ā€“12

    ArticleĀ  Google ScholarĀ 

  • Matthew MW, Adler-Golden SM, Berk A, Richtsmeier SC, Levine RY, Bernstein LS, Acharya PK, Anderson GP, Felde GW, Hoke MP, Ratkowski A, Burke H-H, Kaiser RD, Miller DP (2000) Status of atmospheric correction using a MODTRAN4-based algorithm. In: SPIE Proceedings of algorithms for multispectral, hyperspectral, and ultraspectral imagery VI, 4049, pp 199ā€“207

    Google ScholarĀ 

  • McBratney AB, MendonƧa Santos ML, Minasny B (2003) On digital soil mapping. Geoderma 117(1ā€“2):3ā€“52

    ArticleĀ  Google ScholarĀ 

  • McCarty GW, Reeves JB, Reeves VB, Follett RF, Kimble JM (2002) Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci Soc Am J 66(2):640ā€“646

    ArticleĀ  Google ScholarĀ 

  • McNeil JD (1980) Electromagnetic terrain conductivity measurement at low induction numbers, Tech Note TN-6, Geonics Limited, Mississauga, Ont, Canada

    Google ScholarĀ 

  • Mermut AR, Eswaran H (2001) Some major developments in soil science since the mid-1960s. Geoderma 100(3ā€“4):403ā€“426

    ArticleĀ  Google ScholarĀ 

  • Mougenot B, Pouget M, Epema GF (1993) Remote sensing of salt affected soils. Remote Sens Rev 7(3ā€“4):241ā€“259

    ArticleĀ  Google ScholarĀ 

  • Muhaimeed AS, Al-Shiakly FF (2002) Forecasting some soil components using satellite images for TM sensor. In: 8th Scientific conference for foundation of technical education, pp 111ā€“112

    Google ScholarĀ 

  • Muhaimeed AS, Taha AM (2014) Effect of land use and Irrigation water on amount and type of chemical compounds in some soils of Babylonā€™s Governorate using remote sensing and GIS. Int J Environ Glob Clim Change 2(4):137ā€“147

    Google ScholarĀ 

  • Muhaimeed AS, Wu W, AL-Shafi WM, Ziadat F, Katai HH, Saleim KA (2013) Use remote sensing to map soil salinity in Musaib area central Iraq.Ā ā€‹IntĀ  J Geosci Geomatics 2:34ā€“41

    Google ScholarĀ 

  • Muhaimeed AS, Taha AM, Almashhadani HA (2017) Using remote sensing and GIS techniques for predicting soil organic carbon in Southern Iraq. In: Global symposium on soil organic carbon GSOC2017, 21ā€“23 Mar. FAO, Rome, Italy

    Google ScholarĀ 

  • Mulder VL, Bruin S, de Schaepman ME, Mayr T (2011) The use of remote sensing in soil and terrain mapping: review. Geoderma 162:1ā€“19

    ArticleĀ  Google ScholarĀ 

  • Mustafa BM, Al-Quraishi AMF, Gholizadeh A, Saberioon M (2019) Proximal soil sensing for soil monitoring. In: Al-Quraishi AMF, Negm AM (eds) Environmental remote sensing and GIS in Iraq. Springer Water

    Google ScholarĀ 

  • Omran EE (2012) On-the-go digital soil mapping for precision agriculture. Int J Remote Sens Appl 2(3):20ā€“38

    Google ScholarĀ 

  • Perkins T, Adler-Golden S, Matthew M, Berk A, Anderson G, Gardner J, Felde G (2005) Retrieval of atmospheric properties from hyper and multispectral imagery with the FLAASH atmospheric correction algorithm. In: SchƤfer K, ComerĆ³n AT, Slusser JR, Picard RH, Carleer MR, Sifakis N (eds) Remote sensing of clouds and the atmosphere X. Proceedings of SPIE, vol 5979

    Google ScholarĀ 

  • Pirieet A, Singh B, Islam K (2005) Ultra-violet, visible, near-infra-red, and mid-infra-red diffuse reflectance spectroscopic techniques to predict several soil properties. Aust J Soil Res 43:713ā€“721

    ArticleĀ  Google ScholarĀ 

  • Rhoades JD (1992) Instrumental field methods of salinity appraisal. In: Topp GC, Reynolds WD, Green RE (eds) Advances in measurement of soil physical properties: bringing theory into practice. SSSA Spec. Publ., 30, pp 231ā€“248

    Google ScholarĀ 

  • Rhoades JD, Miyamoto S (1990) Testing soils for salinity and sodicity. In: Westerman RL (ed) Soil testing and plant analysis. SSSA Book Ser, vol 3, 3rd edn, Soil Science Society of America, Madison, Wis

    Google ScholarĀ 

  • Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great plains with ERTS. In: Proceedings of the third ERTS-1 symposium, NASA, SP-351, vol 1, pp 309ā€“317

    Google ScholarĀ 

  • Salehi CW, Baumgardner MF, Biehl LL (1999) Delineation of soil variability using geostatistics and fuzzy clustering analyses of hyperspectral data. Soil Sci Soc Am J 63(1):142ā€“150

    Google ScholarĀ 

  • Salehi MH, Eghbal MK, Khademi H (2003) Comparison of soil variability in a detailed and a reconnaissance soil map in central Iran. Geoderma 111(1ā€“2):45ā€“56

    ArticleĀ  Google ScholarĀ 

  • Sethi M, Bundela DS, Lal K, Kamra SK (2010) Remote sensing and GIS for appraisal of salt affected soils in India. J Environ Qual 39(1):5ā€“15

    ArticleĀ  Google ScholarĀ 

  • Simonson RW (1968) The concept of soil. Adv Agron 20:1ā€“47

    Google ScholarĀ 

  • Soil Survey Division Staff (2017) Soil survey manual. USDAā€”SCS. In: Agriculture hand book, 18.3rd edn. U.S. Government printing Office, Washington, DC

    Google ScholarĀ 

  • Soil Survey Staff (2014) Key to soil taxonomy, 12th edn. USDAā€”NCRA. U.S. Government printing Office, Washington DC

    Google ScholarĀ 

  • Terra FS, DemattĆŖ JAM, Viscarra-Rossel RA (2015) Spectral libraries for quantitative analysis of tropical Brazilian soils: comparing VIS-NIR and MIR reflectance data. Geoderma 142:255ā€“256, 81ā€“93

    Google ScholarĀ 

  • Viscarra-Rossel RAV, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131:59ā€“75

    Google ScholarĀ 

  • Wu W (2012) The generalized difference vegetation index (GDVI) for dryland characterization. Remote Sens 6:1211ā€“1233

    ArticleĀ  Google ScholarĀ 

  • Wu W, Al-Shafie WM, Muhaimeed AS, Ziadat F, Nangia V, Payne WB (2014a) Soil salinity mapping by multiscale remote sensing in mesopotamia, Iraq. IEEE J Sel Topic Appl Earth Obs Remote Sens 7(11):4442ā€“4449

    Google ScholarĀ 

  • Wu W, Muhaimeed AS, Al-Shafie WM, Ziadat F, Dhehibi B, Nangia V, De Pauw E (2014b) Mapping soil salinity changes using remote sensing in Central Iraq. Geoderma Reg 2ā€“3:21ā€“31

    ArticleĀ  Google ScholarĀ 

  • Wu W, Zucca C, Muhaimeed AS, Al-Shafie WM, Al-Quraishi AMF, Nangia V, Zhu M, Liu G (2018) Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq. Land Degrad Dev 29(11):4005ā€“4014

    Google ScholarĀ 

  • Wu W, Muhaimeed AS, Al-Shafie AM, Al-Quraishi AMF (2019) Using radar and optical data for soil salinity modeling and mapping in Central Iraq. In: Al-Quraishi AMF, Negm AM (eds) Environmental remote sensing and GIS in Iraq. Springer Water

    Google ScholarĀ 

  • Yousif BF (2004) The use of remote sensing techniques in the classification of Al-Najaf Soil. M.Sc. thesis, Building and Construction Engineering Department, University of Technology

    Google ScholarĀ 

  • Zhang TT et al (2011) Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecol Ind 11(6):1552ā€“1562

    ArticleĀ  Google ScholarĀ 

  • Zribi M, Baghdadi N, Nolin M (2011) Remote sensing of soil. Appl Environ Soil Sci. Hindawi Publishing Corporation

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Salih Muhaimeed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muhaimeed, A.S. (2020). Using Remote Sensing to Predict Soil Properties in Iraq. In: Al-Quraishi, A., Negm, A. (eds) Environmental Remote Sensing and GIS in Iraq. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-21344-2_3

Download citation

Publish with us

Policies and ethics