Skip to main content

Using Radar and Optical Data for Soil Salinity Modeling and Mapping in Central Iraq

  • Chapter
  • First Online:
Environmental Remote Sensing and GIS in Iraq

Part of the book series: Springer Water ((SPWA))

Abstract

As one of the environmental calamities, soil salinization has become a key concern in agricultural management, especially, in irrigated areas in dryland systems. How to quantify and map soil salinity in space and time to provide relevant advices for decision-makers and land managers for their agricultural development has become a pressing issue. Based on our previous works, this study was aimed to develop rather simple and operational approaches for such quantification and mapping taking the Mussaib site in Central Iraq as an example. In conjunction with the field samples, ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array L-band Synthetic Aperture Radar) data and Landsat 5 TM (Thematic Mapper) imagery acquired at almost the same time were employed for this purpose. After derivation of different biophysical indicators from the TM images and removal of the impacts of vegetation water content (VWC) on the L-band radar backscattering coefficients, a multivariate linear regression (MLR) modeling was applied to establish the combined and radar-based soil salinity models. Results revealed that VWC removal procedure could significantly improve the correlation between the measured apparent soil salinity (ECa) and radar backscattering coefficients by 7.5–25.6%. The optical-radar combined models can reliably predict soil salinity with an accuracy of 77.0–83.7% (R2 = 0.770–0.837). Merely, further improvement in reducing the impacts of vegetation cover and soil moisture by radar data themselves is still recommended. In conclusion, the optical-radar combined approaches and models developed in this chapter shall be operational for soil salinity modeling and mapping; and radar-based approach has great potential for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.icarda.org/iraq-salinity-project.

References

  • Abood S, Maclean A, Falkowski M (2011) Soil salinity detection in the Mesopotamian Agricultural Plain utilizing WorldView-2 imagery. Available online at: http://dgl.us.neolane.net/res/img/16bb89b080930a8ad1fdfc17665883e9.pdf. Accessed in Jan 2012

  • Al-Layla MA (1978) Effect of salinity on agriculture in Iraq. J Irrig Drain Div 104(2):195–207

    Google Scholar 

  • Al-Mahawili SMH (1983) Satellite image interpretation and laboratory spectral reflectance measurement of saline and gypsiferous soils of west Baghdad, Iraq. M.Sc. thesis, Purdue University

    Google Scholar 

  • Aly Z, Bonn FJ, Magagi R (2004) Modelling the backscattering coefficient of salt-affected soils: application to Wadi El-Natrun bottom, Egypt. EARSeL eProceedings, vol 3, 3/2004, pp 372–381

    Google Scholar 

  • Attema EPW, Ulaby FT (1978) Vegetation modeled as a water cloud. Radio Sci J 13:357–364

    Article  Google Scholar 

  • Baghdadi N, El Hajj M, Zribi M, Bousbih S (2017) Calibration of the water cloud model at C-Band for winter crop fields and grasslands. Remote Sens 9(9):969. https://doi.org/10.3390/rs9090969

    Article  Google Scholar 

  • Bannari A, El-Battay A, Bannari R, Rhinane H (2018) Sentinel-MSI VNIR and SWIR bands sensitivity analysis for soil salinity discrimination in an arid landscape. Remote Sens 10:855. https://doi.org/10.3390/rs10060855

    Article  Google Scholar 

  • Bindlish R, Barros AP (2001) Parameterization of vegetation backscatter in radar-based, soil moisture estimation including vegetation scattering effects in a radar based soil moisture estimation model. Remote Sens Environ 76:130–137

    Article  Google Scholar 

  • Buringh P (1960) Soils and soil conditions in Iraq. MoA of Iraq, p 337

    Google Scholar 

  • Chaurasia S, Nigam R, Bhattacharya BK, Sridhar VN, Mallick K, Vyas SP, Patel NK, Mukherjee J, Shekhar C, Kumar D, Singh KRP, Bairagi GD, Purohit NL, Parihar JS (2011) Development of regional wheat VI-LAI models using Resourcesat-1 AWiFS data. J Earth Syst Sci 120(6):1113–1125

    Article  Google Scholar 

  • Clevers JGPW, van Leeuwen HJC (1996) Combined use of optical and microwave remote sensing data for crop growth monitoring. Remote Sens Environ 56(1):42–51

    Article  Google Scholar 

  • Crist EP, Cicone RC (1984) Application of the tasseled cap concept to simulated thematic mapper data. Photogram Eng Remote Sens 50:343–352

    Google Scholar 

  • Dabrowska-Zielinska K, Inoue Y, Kowalik W, Gruszczynska M (2007) Inferring the effect of plant and soil variables on C- and L-band SAR backscatter over agricultural fields, based on model analysis. Adv Space Res 39:139–148

    Article  Google Scholar 

  • Dieleman PJ (ed) (1963) Reclamation of salt affected soils in Iraq. International Institute for Land Reclamation and Improvement, Wageningen Publication, p 175

    Google Scholar 

  • Diker K, Bausch WC (2003) Potential use of nitrogen reflectance index to estimate plant parameters and yield of maize. Biosys Eng 85(4):437–447. https://doi.org/10.1016/S1537-5110(03)00097-7

    Article  Google Scholar 

  • Dwivedi RS, Rao BRM (1992) The selection of the best possible Landsat TM band combination for delineating salt-affected soils. Int J Remote Sens 13(11):2051–2058

    Article  Google Scholar 

  • Eldeiry AA, Garcia LA (2010) Comparison of ordinary kriging, regression kriging, and cokriging techniques to estimate soil salinity using Landsat images. J Irrig Drain Eng 136:355–364

    Article  Google Scholar 

  • FAO (2008) Irrigation in the Middle East Region in figures. FAO Water Reports 34, AQUASTAT Survey, p 423

    Google Scholar 

  • Farifteh J, Farshad A, George RJ (2006) Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma 130(3–4):191–206

    Article  Google Scholar 

  • Farifteh J, van der Meer F, Atzberger C, Carranza E (2007) Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN). Remote Sens Environ 110:59–78

    Article  Google Scholar 

  • Fieuzal R, Duchemin B, Jarlan L, Zribi M, Baup F, Merlin O, Hagolle O, Garatuza-Payan J (2011) Combined use of optical and radar satellite data for the monitoring of irrigation and soil moisture of wheat crops. Hydrol Earth Syst Sci 15:1117–1129

    Article  Google Scholar 

  • Gao B (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58:257–266

    Article  Google Scholar 

  • Gao Y, Walker JP, Allahmoradi M, Monerris A, Ryu D, Jackson TJ (2015) Optical sensing of vegetation water content: a synthesis study. IEEE J Sel Topics Appl Earth Obs Remote Sens 8(4):1456–1464. https://doi.org/10.1109/JSTARS.2015.2398034

    Article  Google Scholar 

  • Gitelson AA (2004) Wide dynamic range vegetation index for remote quantification of crop biophysical characteristics. J Plant Physiol 161:165–173

    Article  Google Scholar 

  • Gong H, Shao Y, Brisco B, Hu Q, Tian W (2013) Modeling the dielectric behavior of saline soil at microwave frequencies. Can J Remote Sens 39(1):1–10

    Article  Google Scholar 

  • Hardisky MA, Klemas V, Smart RM (1983) The influences of soil salinity, growth form, and leaf moisture on the spectral reflectance of Spartina alterniflora canopies. Photogram Eng Remote Sens 49:77–83

    Google Scholar 

  • He B, Xing M, Bai X (2014) A synergistic methodology for soil moisture estimation in an Alpine prairie using radar and optical satellite data. Remote Sens 6:10966–10985. https://doi.org/10.3390/rs61110966

    Article  Google Scholar 

  • Huang J, Chen DY, Cosh MH (2009) Sub-pixel reflectance unmixing in estimating vegetation water content and dry biomass of corn and soybeans cropland using normalized difference water index (NDWI) from satellites. Int J Remote Sens 30:2075–2104

    Article  Google Scholar 

  • Huete AR (1988) A soil adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309

    Article  Google Scholar 

  • Huete AR, Liu HQ, Batchily K, van Leeuwen W (1997) A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sens Environ 59:440–451

    Article  Google Scholar 

  • Jackson TJ, Chen D, Cosh M, Li F, Anderson M, Walthall C, Doriaswamy P, Hunt ER (2004) Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens Environ 92:475–482

    Article  Google Scholar 

  • Jacobsen T, Adams RM (1958) Salt and silt in ancient Mesopotamian agriculture. Science 128:1251–1258

    Article  Google Scholar 

  • Kaufman YJ, Tanré D (1992) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans Geosci Remote Sens 30:261–270

    Article  Google Scholar 

  • Kumar K, Hari Prasad KS, Arora MK (2012) Estimation of water cloud model vegetation parameters using a genetic algorithm. Hydrol Sci J 57(4):776–789

    Article  Google Scholar 

  • Lasne Y, Paillou P, Ruffle G, Serradilla C, Demontoux F, Freeman A, Farr T, McDonald K, Chapman B, Malezieux J-M (2008) Effect of salinity on the dielectric properties of geological materials: implication for soil moisture detection by means of remote sensing. IEEE Trans Geosci Remote Sens 46:3689–3693

    Article  Google Scholar 

  • Lee JS (1980) Digital image enhancement and noise filtering by use of local statistics. IEEE Trans Pattern Anal Mach Intell PAMI-2 2:165–168

    Article  Google Scholar 

  • Leonard A, Beriaux E, Defourny P (2013) Complementarity of linear polarizations in C-band SAR imagery to estimate leaf area index for maize and winter wheat. In: Proceedings of the ESA living planet symposium 2013, Edinburgh, UK, 9–13 Sept 2013 (ESA SP-722, Dec 2013)

    Google Scholar 

  • Li RY, Ulaby FT, Eyton RJ (1980) Crop classification with a landsat/radar sensor combination. In: Proceedings of LARS symposia, Purdue University, West Lafayette, USA, pp 78–86

    Google Scholar 

  • Maggioni V, Panciera R, Walker JP, Rinaldi M, Paruscia V (2006) A multi-sensor approach for high resolution airborne soil moisture mapping. In: Proceedings of the 30th hydrology and water resource symposium, 4–8 Dec 2006, Launceston, TAS, Australia

    Google Scholar 

  • Metternicht GI, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85:1–20

    Article  Google Scholar 

  • Moran MS, Vidal A, Troufleau D, Qi J, Clarke TR, Pinter PJ Jr, Mitchell TA, Inoue Y, Neale CMU (1997) Combining multifrequency microwave and optical data for crop management. Remote Sens Environ 61:96–109

    Article  Google Scholar 

  • Mougenot B, Pouget M, Epema G (1993) Remote sensing of salt-affected soils. Remote Sens Rev 7:241–259

    Article  Google Scholar 

  • Muhaimeed AS, Wu W, AL-Shafie WM, Ziadat F, Al-Musawi HH, Saliem KA (2013) Use remote sensing to map soil salinity in the Musaib area in Central Iraq. Int J Geosci Geomatics 1(2):34–41. ISSN: 2052-5591

    Google Scholar 

  • Pereira LDO, Freitas CDC, Anna SJSS, Lu D, Moran EF (2013) Optical and radar data integration for land use and land cover mapping in the Brazilian Amazon. GISci Remote Sens 50(3):301–321. https://doi.org/10.1080/15481603.2013.805589

    Article  Google Scholar 

  • Perkins T, Adler-Golden S, Matthew M, Berk A, Anderson G, Gardner J, Felde G (2005) Retrieval of atmospheric properties from hyper and multispectral imagery with the FLAASH atmospheric correction algorithm. In: Schäfer K, Comerón AT, Slusser JR, Picard RH, Carleer MR, Sifakis N (eds) Remote sensing of clouds and the atmosphere X. Proceedings of SPIE, vol 5979

    Google Scholar 

  • Prévot L, Dechambre M, Taconet O, Vidal-Madjar D, Normand M, Galle S (1993) Estimating the characteristics of vegetation canopies with airborne radar measurements. Int J Remote Sens 14(15):2803–2818

    Article  Google Scholar 

  • Rao B, Sankar T, Dwivedi R, Thammappa S, Venkataratnam L, Sharma R, Das S (1995) Spectral behaviour of salt-affected soils. Int J Remote Sens 16:2125–2136

    Article  Google Scholar 

  • Shao Y, Hu Q, Guo H, Lu Y, Dong Q, Han C (2003) Effect of dielectric properties of moist salinized soils on backscattering coefficients extracted from RADARSAT image. IEEE Trans Geosci Remote Sens 41(8):1879–1888. https://doi.org/10.1109/TGRS.2003.813499

    Article  Google Scholar 

  • Shimada M, Isoguchi O, Tadono T, Isono K (2009) PALSAR radiometric and geometric calibration. IEEE Trans Geosci Remote Sens 47(12):3915–3931

    Article  Google Scholar 

  • Sreenivas K, Venkataratnam L, Rao PVN (1995) Dielectric properties of salt affected soils. Int J Remote Sens 16:641–649

    Article  Google Scholar 

  • Taghizadeh-Mehrjardi R, Minasny B, Sarmadian F, Malone BP (2014) Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma 213:15–28. https://doi.org/10.1016/j.geoderma.2013.07.020

    Article  Google Scholar 

  • Taylor GR, Mah AH, Kruse FA, Kierein-Young KS, Hewson RD, Bennett BA (1996) Characterization of saline soils using airborne radar imagery. Remote Sens Environ 57:127–142

    Article  Google Scholar 

  • Ulaby FT, Batlivala PP, Dobson MC (1978) Microwave backscatter dependence on surface roughness, soil moisture and soil texture—part I: bare soil. IEEE Trans Geosci Electron 16:286–295

    Article  Google Scholar 

  • Wu W (2014) The generalized difference vegetation index (GDVI) for dryland characterization. Remote Sens 6:1211–1233

    Article  Google Scholar 

  • Wu W, Muhaimeed AS, Platonov A, Al-Shafie WM, Abbas AH, Al-Musawi HH, Khalaf AJ, Salim KA, Christen E, De Pauw E, Ziadat F (2012) Salinity modeling by remote sensing in central and southern Iraq. American Geophysical Union (AGU) fall meeting, 03–07 Dec 2012, San Francisco, USA (extended abstract)

    Google Scholar 

  • Wu W, Al-Shafie WM, Muhaimeed AS, Ziadat F, Nangia V, Payne W (2014a) Soil salinity mapping by multiscale remote sensing in Mesopotamia, Iraq. IEEE J Sel Topics Appl Earth Obs Remote Sens 7(11):4442–4452. https://doi.org/10.1109/JSTARS.2014.2360411

    Article  Google Scholar 

  • Wu W, Muhaimeed AS, Al-Shafie WM, Ziadat F, Nangia V, De Pauw E (2014b) Mapping soil salinity changes using remote sensing in Central Iraq. Geoderma Reg 2–3:21–31. https://doi.org/10.1016/j.geodrs.2014.09.002

    Article  Google Scholar 

  • Wu W, Zucca C, Karam F, Liu G (2016) Enhancing the performance of regional land cover mapping. Int J Earth Obs Geoinf 52:422–432. https://doi.org/10.1016/j.jag.2016.07.014

    Article  Google Scholar 

  • Wu W, Zucca C, Muhaimeed AS, Al-Shafie WM, Al-Quraishi AMF, Nangia V, Zhu M, Liu G (2018) Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia. Land Degrad Dev 29(11):4005–4014. https://doi.org/10.1002/ldr.3148

    Article  Google Scholar 

  • Xavier AC, Vettorazzi CA (2004) Monitoring leaf area index at watershed level through NDVI from Landsat-7/ETM+ data. Sci Agricola 61(3):243–252 (Piracicaba, Braz.)

    Article  Google Scholar 

  • Yi YH, Yang DW, Chen DY, Huang JF (2007) Retrieving crop physiological parameters and assessing water deficiency using MODIS data during the winter wheat growing period. Can J Remote Sens 33:189–202

    Article  Google Scholar 

  • Yilmaz MT, Hunt ER, Jackson TJ (2008) Remote sensing of vegetation water content from equivalent water thickness using satellite Imagery. Remote Sens Environ 112:2514–2522

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank AusAID (Australian Agency for International Development) for their funding in our previous works in Mesopotamia (ICARDA Project No: LWR/2009/034, 2010–2014) while the first author was with ICARDA, and East China University of Technology for their financial support to Dr. Weicheng Wu for his research on assessment of sustainable use of environmental resources (Grant No: DHTP2018001, 2018–2021). Our sincere gratitude will go to ESA (https://alos-palsar-ds.eo.esa.int) for their provision of ALOS PALSAR and Landsat 5 TM data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weicheng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, W., Muhaimeed, A.S., Al-Shafie, W.M., Al-Quraishi, A.M.F. (2020). Using Radar and Optical Data for Soil Salinity Modeling and Mapping in Central Iraq. In: Al-Quraishi, A., Negm, A. (eds) Environmental Remote Sensing and GIS in Iraq. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-21344-2_2

Download citation

Publish with us

Policies and ethics