Skip to main content

Dual-Path Noise Cancelling LNA

  • Chapter
  • First Online:

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

In this chapter we present a 0.7 V low power LNA which combines a 1:3 frontend balun with dual-path noise and nonlinearity cancellation for improved noise performance at low powers. In traditional noise cancellation techniques only the noise of the main path is cancelled while the noise of the auxiliary path is reduced by using higher power. In the proposed design, the noise and nonlinearity of both the main and the auxiliary paths are mutually cancelled allowing for low power operation. The 2.8 dB NF, − 10.7 dBm IIP3 LNA in TSMC’s 65 nm GP process consumes 475 μW of power resulting in an FOM of 28.8 dB which is 8.2 dB better than the state of the art.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Pellerano et al., Radio architectures and circuits towards 5G, in IEEE International Solid-State Circuits Conference (2016), pp. 498–501

    Google Scholar 

  2. M. Rahman, M. Elbadry, R. Harjani, An IEEE 802.15.6 standard compliant 2.5 nJ/Bit multiband WBAN transmitter using phase multiplexing and injection locking. IEEE J. Solid State Circuits 50(5), 1126–1136 (2015)

    Article  Google Scholar 

  3. M. Rahman, R. Harjani, CMOS energy efficient integrated radios for emerging low power standards, in IEEE Radio Frequency Integrated Circuits (2016), pp. 151–152

    Google Scholar 

  4. IEEE standard for local and metropolitan area networks—part 15.6: wireless body area networks. IEEE Std. 802.15.6-2012 (2012), pp. 1–271

    Google Scholar 

  5. Cisco. Cisco Internet Business Solutions Group White Paper: The Internet of Things (2011)

    Google Scholar 

  6. S.C. Blaakmeer, E.A.M. Klumperink, D.M.W. Leenaerts, B. Nauta, Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J. Solid State Circuits 43(6), 1341–1350 (2008)

    Article  Google Scholar 

  7. F. Bruccoleri, E.A.M. Klumperink, B. Nauta, Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE J. Solid State Circuits 39(2), 275–282 (2004)

    Article  Google Scholar 

  8. S.C. Blaakmeer, E.A.M. Klumperink, D.M.W. Leenaerts, B. Nauta, The blixer, a wideband balun-LNA-I/Q-mixer topology. IEEE J. Solid State Circuits 43(12), 2706–2715 (2008)

    Article  Google Scholar 

  9. D. Murphy, A. Hafez, A. Mirzaei, M. Mikhemar, H. Darabi, M.C.F. Chang, A. Abidi, A blocker-tolerant wideband noise-cancelling receiver with a 2dB noise figure, in IEEE International Solid-State Circuits Conference (2012), pp. 74–76

    Google Scholar 

  10. M. Rahman, R. Harjani, A 0.7V 194uW 31dB FOM 2.3-2.5 GHz RF frontend for WBAN with mutual noise cancellation using passive coupling, in IEEE Radio Frequency Integrated Circuits Symposium (2015), pp. 175–178

    Google Scholar 

  11. M. Rahman, R. Harjani, A Sub-1V 194μW 31-dB FOM 2.3-2.5 GHz mixer-first receiver frontend for WBAN with mutual noise cancellation. IEEE Trans. Microwave Theory Tech. 64(4),1102–1109 (2016)

    Google Scholar 

  12. M. Rahman, R. Harjani, A sub-1v, 2.8db NF, 475μw coupled LNA for internet of things employing dual-path noise and nonlinearity cancellation, in IEEE Radio Frequency Integrated Circuits (2017), pp. 236–239

    Google Scholar 

  13. J.R. Long, Monolithic transformers for silicon RF IC design. IEEE J. Solid State Circuits 35(9), 1368–1382 (2000)

    Article  Google Scholar 

  14. J.R. Long, The modeling, characterization, and design of monolithic inductors for silicon RF IC’s. IEEE J. Solid State Circuits 32(3), 357–369 (1997)

    Article  Google Scholar 

  15. F. Bruccoleri, E.A.M. Klumperink, B. Nauta, Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE J. Solid State Circuits 39(2), 275–282 (2004)

    Article  Google Scholar 

  16. J. Deguchi, D. Miyashita, M. Hamada, A 0.6V 380uW-14dBm LO-input 2.4GHz double-balanced current-reusing single-gate CMOS mixer with cyclic passive combiner, in IEEE International Solid-State Circuits Conference (2009), pp. 224–225

    Google Scholar 

  17. F. Zhang, K. Wang, J. Koo, Y. Miyahara, and B. Otis, A 1.6mW 300mV-supply 2.4GHz receiver with -94dBm sensitivity for energy-harvesting applications, in IEEE International Solid-State Circuits Conference (IEEE, Piscataway, 2013), pp. 456–457

    Google Scholar 

  18. C.-W. Kim, M.-S. Kang, P.T. Anh, H.-T. Kim, S.-G. Lee, An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system. IEEE J. Solid State Circuits 40(2), 544–547 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, M., Harjani, R. (2020). Dual-Path Noise Cancelling LNA. In: Design of Low Power Integrated Radios for Emerging Standards. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-21333-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21333-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21332-9

  • Online ISBN: 978-3-030-21333-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics