Constructive Semantics pp 149-172 | Cite as
The Truth of Proof: A Hegelian Perspective on Constructivism
- 118 Downloads
Abstract
In the constructivist movement, which started with Brouwer’s attack on the principles of classical logic and mathematics, the history of mathematics seems to repeat itself in a specific, self-conscious way. The main objective of this paper is to describe this approach by adopting the phenomenological method of Hegel. Its starting point consists in looking at knowledge as a continuous, yet painful, process—the Calvary of the Spirit—with its stations corresponding to the naive, direct concepts of experience as based on sense certainty or belief in the independent realms of objects and their transformation into more sophisticated, socially charged theories. The signs of this advance are the patterns of self-consciousness, such as Cantor’s diagonal results, adopted by constructivism in a different but still powerful way. The key concept against which the progress of this development will be measured within the constructivist movement is the concept of proof, particularly with respect to Gödel theorems and the resulting split of knowledge into proof and truth. I will read this split, with the help of Lorenzen and Brandom, as a relative differentiation between two co-dependent aspects of self-consciousness that are to be prospectively conceived as two idealized dialogue partners.
Keywords
Intuition Brouwer Diagonalization Truth Proof Constructivism Self-consciousness Hilbert Hegel Lorenzen Gödel theoremsNotes
Acknowledgements
The author would like to thank Professor Pirmin Stekeler-Weithofer for valuable conversations on the subject and Dr. Tereza Matějčková for the detailed comments on the final draft of the paper.
References
- Aristotle. (1998). Metaphysics. (H. Lawson-Tancred, Trans). London: Penguin Classics.Google Scholar
- Bishop, E., & Bridges, D. (1980). Constructive analysis. Berlin: Springer.Google Scholar
- Brandom, R. (1994). Making it explicit: Reasoning, representing, and discursive commitment. Cambridge, MA: Harvard University Press.Google Scholar
- Brandom, R. (2000). Articulating reasons. An introduction to inferentialism. Cambridge, MA: Harvard University Press.Google Scholar
- Brouwer, L. E. J. (1907). Over de grondslagen der wiskunde (Ph.D. Thesis). Amsterdam: Universiteit van Amsterdam.Google Scholar
- Brouwer, L. E. J. (1975). Collected Works I. In A. Heyting (Ed.). Amsterdam: North-Holland.Google Scholar
- Frege, G. (1893/1903). Grundgesetze der Arithmetik I–II: Begriffsschriftlich abgeleitet. Jena: H. Pohle.Google Scholar
- Gettier, E. (1963). Is justified true belief knowledge? Analysis, 23, 121–123.CrossRefGoogle Scholar
- Gödel, K. (1931). Über formal unentscheidbare Sätze der ‘Principia Mathematica’ und verwandter Systeme I. Monatshefte für Mathematik und Physik, 37, 349–360.CrossRefGoogle Scholar
- Gödel, K. (1995). Some basic theorems on the foundations of mathematics and their implications. In S. Feferman, J. W. Dawson, W. Goldfarb, C. Parsons, & R. M. Solovay (Eds.), Collected works III (pp. 304–323). Oxford: Oxford University Press.Google Scholar
- Gödel, K. (2003). Collected works V. Correspondence H-Z. In S. Feferman, J. W. Dawson, W. Goldfarb, C. Parsons, & W. Sieg (Eds.), Oxford: Oxford University Press.Google Scholar
- Hegel, G. W. F. (1977). Phenomenology of spirit (A. V. Miller, Trans.). Oxford: Oxford University Press.Google Scholar
- Hegel, G. W. F. (2010). The science of logic (G. di Giovanni, Trans.). Cambridge: Cambridge University Press.Google Scholar
- Heyting, A. (1956). Intuitionism. An introduction. Amsterdam: North-Holland Publishing Company.Google Scholar
- Hilbert, D. (1926). Über das Unendliche. Mathematische Annalen, 95, 161–190.CrossRefGoogle Scholar
- Hilbert, D. (1930). Naturerkennen und Logik. Die Naturwissenschaften, 18, 959–963.CrossRefGoogle Scholar
- Hilbert, D. (1935). Gesammelte Abhandlungen. Dritter Band: Analysis, Grundlagen der Mathematik, Physik, Verschiedenes. Lebensgeschichte. Berlin: Springer.Google Scholar
- Kant, I. (1781/1787). Kritik der reinen Vernunft. Riga: Johann Friedrich Hartknoch.Google Scholar
- Kolman, V. (2009). What do Gödel theorems tell us about Hilbert’s solvability thesis? In M. Peliš (Ed.), Logica Yearbook 08 (pp. 83–94). London: College Publications.Google Scholar
- Kolman, V. (2010). Continuum, name, and paradox. Synthese, 175, 351–367.CrossRefGoogle Scholar
- Kolman, V. (2015). Logicism as making arithmetic explicit. Erkenntnis, 80, 487–503.CrossRefGoogle Scholar
- Kolman, V. (2016a). Zahlen. Berlin: de Gruyter.Google Scholar
- Kolman, V. (2016b). Hegel’s bad infinity as a logical problem. Hegel-Bulletin, 37, 258–280.CrossRefGoogle Scholar
- Kolman, V. (2018). Intuition and the end of all -Isms. Organon F, 25, 392–409.Google Scholar
- Kvasz, L. (2008). Patterns of change. Linguistic innovations in the development of classical mathematics. Basel: Birhäuser.Google Scholar
- Lorenzen, P. (1955). Einführung in die operative Logik und Mathematik. Berlin: Springer.CrossRefGoogle Scholar
- Lorenzen, P. (1962). Metamathematik. Mannheim: Bibliographisches Institut.Google Scholar
- Lorenzen, P., & Lorenz, K. (1978). Dialogische Logik. Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
- Lorenzen, P. (1984). Elementargeometrie. Mannheim: Bibliographisches Institut.Google Scholar
- Plato. Parmenides (1961). In E. Hamilton & H. Cairns (Eds.), The collected dialogues (F. M. Conford., Tran., pp. 920–957). Princeton, NJ: Princeton University Press.Google Scholar
- Schütte, K. (1960). Beweistheorie. Berlin: Springer.Google Scholar
- Stekeler-Weithofer, P. (1995). Sinn-Kriterien. Die logischen Grundlagen kritischer Philosophie von Platon bis Wittgenstein. Padeborn: Schöningh.Google Scholar
- Stekeler-Weithofer, P. (2008). Formen der Anschauung, Eine Philosophie der Mathematik. Berlin: de Gruyter.Google Scholar
- Stekeler-Weithofer, P. Hegel’s analytic pragmatism (Unpublished). See http://www.sozphil.uni-leipzig.de/cm/philosophie/mitarbeiter/pirmin_stekeler/.
- Wittgenstein, L. (1953). Philosophical investigations. Oxford: Blackwell.Google Scholar
- Wittgenstein, L. (1964). Philosophical remarks. Oxford: Blackwell.Google Scholar