Constructive Semantics pp 95-120 | Cite as
A Dialogical Account of the Intersubjectivity of Intuitionism
- 113 Downloads
Abstract
The present paper aims at integrating the phenomenological reading of Brouwerian intuitionism into the domain of semantics, by challenging the claim that the very meaning of mathematical expressions—expressions of free choice sequences included—is invariable and objectively determinable and that, accordingly, any deictic expression should be removed from mathematics. By introducing constructability into the constitution of meaning itself and by considering meaning as a “social act”, we try to map another route into intersubjectivity, based on the distinction between the play-level and the strategic level, which has been further developed in the dialogical framework, following the work of Paul Lorenzen. It is suggested that the steps towards such a route can be retraced from Oskar Becker’s original “Cartesian” approach to intersubjectivity, which facilitates a new reading of Brouwer’s own way of conceptualizing “mutual understanding”. In doing so, our general purpose is therefore to promote an insertion of dialogical constructivism into Mark van Atten’s take on the intuitionist Creating Subject.
Keywords
Actual/potential Creating subject Deictics Dialogical logic Free choice sequences Intersubjectivity Intuitionism Occasional expressions Phenomenological reduction Transcendental subject Turing machineNotes
Acknowledgements
Thanks to Shahid Rahman for his endless support and to Claudio Majolino for suggesting that I read and study Oskar Becker in the first place. To Mark van Atten, who patiently answered my innumerable questions, whose writings introduced me to Brouwer’s thought (making the present study possible), and who read and provided invaluable clarifications for the first version of this paper, I owe an enormous debt of gratitude. Finally, I would like to thank Christina Weiss, for having given me the opportunity to write it.
References
- Bassler, O. B. (2006). Book review: Mark van Atten, On Brouwer. Notre Dame Journal of Formal Logic, 47(4), 581–599.CrossRefGoogle Scholar
- Becker, O. (1927). Mathematische Existenz: Untersuchungen zur Logik und Ontologie mathematischer Phänomene. Halle a. d. S.: Niemeyer.Google Scholar
- Becker, O. (1929). Von der Hinfälligkeit des Schönen und der Abenteuerlichkeit des Künstlers. I: Jahrbuch für Philosophie und phänomenologische Forschung. Ergänzungsband. Halle: Husserl-Festschrift (pp. 27–52).Google Scholar
- Becker, O. (1936). Husserl und Descartes. Archiv für Rechts- und Sozialphilosophie, 30, 616–621.Google Scholar
- Becker, O. (1962). Zwei phänomenologische Betrachtungen zum Realismusproblem. In K. Hartmann (Ed.), Lebendiger Realismus : Festschrift für Johannes Thyssen (pp. 1–26). Bonn: H. Bouvier.Google Scholar
- Brandom, R. (2000). Articulating reasons: An introduction to inferentialism. Cambridge, London: Harvard University Press.Google Scholar
- Broch, H. (1933). Die unbekannte Größe. Berlin: Fischer Verlag (2. Auflage 2016. Suhrkamp Taschenuch).Google Scholar
- Brouwer, L. E. J. (1949). Consciousness, philosophy, and mathematics. In Proceedings of the Tenth International Congress of Philosophy, Amsterdam, August 11–18, 1948. North-Holland Publishing Company, Amsterdam 1949, pp. 1235–1249. The Journal of Symbolic Logic, 14(2), 1235–1249.Google Scholar
- Brouwer, L. E. (1975). Collected works. In A. Heyting (Ed.),North-Holland, Amsterdam.Google Scholar
- Bühler, K. (2011). Theory of language: The representational function of language (D. Fraser Goodwin, Trans.). Amsterdam, Philadelphia: John Benjamins Publishing Company.Google Scholar
- Cavell, S. (1979). The claim of reason. Oxford, New York: Oxford University Press.Google Scholar
- Dango, A. B. (2016). Approche dialogique de la révision des croyances dans le contexte de la théorie constructive des types de Per Martin-Löf. London: College Publication.Google Scholar
- Descartes, R., (1999). Oeuvres philosophiques. (F. Alquié, Ed.) II: 1638–1642. Paris: Garnier.Google Scholar
- Dummett, M. (1977). Elements of Intuitionism. Oxford: Clarendon Press.Google Scholar
- Gethmann, C. F. (2002). Hermeneutische Philosophie und Logischer Intuitionismus. In J. Mittelstrass & A. Gethmann, Die Philosophie und die Wissenschaften (Fink). München (pp. 109–128).Google Scholar
- Heidegger, M. (1979). Sein und Zeit. Tübingen: M. Niemeyer.Google Scholar
- Heyting, A. (1931). Die intuistonnische Grundlegung der Mathematik. Erkenntnis, 2, 106–115.CrossRefGoogle Scholar
- Husserl, E. (1962). L’origine de la géométrie (J. Derrida, Trans.). Paris: Presses Universitaires de France.Google Scholar
- Husserl, E. (1969). Formal and transcendental logic (D. Cairns, Trans.). The Hague: Martinus Nijhoff.Google Scholar
- Husserl, E. (1973a). Experience and judgment: Investigations in a genealogy of logic (L. Landgrebe, Ed., S. Churchill & K. Ameriks, Trans.). London: Routledge and K. Paul.Google Scholar
- Husserl, E. (1973b). Zur Phänomenologie der Intersubjektivität: Texte aus dem Nachlass. Zweiter Teil: 1921–1928. In Kern, I., & Breda, H. L. van (Ed.). The Hague: Martinus Nijhoff.Google Scholar
- Husserl, E. (1983). Ideas pertaining to a pure phenomenology and to a phenomenological philosophy: First book: General introduction to a pure phenomenology (F. Kersten, Trans.). The Hague, Boston; Lancaster: Kluwer Academic Publishers.Google Scholar
- Husserl, E. (1995). Cartesianische Meditationen: Eine Einleitung in die Phänomenologie (Vol. 3, duchgesehen Auflage). Hamburg: Meiner.Google Scholar
- Husserl, E. (2001a). Logical investigations. Vol. 1 (J. N. Findlay, Trans.). London: Routledge.Google Scholar
- Husserl, E. (2001b). Logical investigations. Vol. 2 (J. N. Findlay, Trans.). London: Routledge.Google Scholar
- Kern, I. (1964). Husserl und Kant. Den Haag: Nijhoff.CrossRefGoogle Scholar
- Kreisel, G. (1967). Informal rigour and completeness proofs. In I. Lakatos (Ed.). Studies in logic and the foundations of mathematics (Vol. 47, pp. 138–186). Elsevier, Amsterdam.CrossRefGoogle Scholar
- Lorenz, K. (1972). Der dialogische Wahrheitsbegriff, Neue Hefte für Philosophie. H 213, pp. 111–123.Google Scholar
- Lorenz, K. (2009). Dialogischer Konstruktivismus. Berlin, New York: De Gruyter.Google Scholar
- Lorenz, K. (2010). Logic, language and method: On polarities in human experience. Berlin, New-York: De Gruyter.Google Scholar
- Lorenzen, P. (1960). Logik und Agon, Atti. Congr. Internat. De Filosofia, vol. 4. Sansoni, Firenze, pp. 187–194. Reprinted in Lorenzen, P., & Lorenz K. (1978) Dialogische Logik, Darmstadt: wissenschaftl. Buchgesellschaft.Google Scholar
- Lorenzen, P., & Schwemmer, O. (1975). Konstruktive Logik, Ethik und Wissenschaftstheorie. Meisenheim: Anton Hein.Google Scholar
- Marion, M. (1998). Wittgenstein, finitism, and the foundations of mathematics. New York: Oxford University Press.Google Scholar
- Martin-Löf, P. (1990). Mathematics of infinity. In Proceedings of the International Conference on Computer Logic (pp. 146–197). London, UK, UK: Springer-Verlag.CrossRefGoogle Scholar
- Martin-Löf, P. (2017). Assertion and request. Lecture held at Oslo, 2017. Transcription by A. Klev.Google Scholar
- Mittelstrass, J. (2002). Oskar Becker und Paul Lorenzen oder: die Begegnung zwischen Phänomenologie und Konstrüktivismus. In J. Mittelstrass & A. Gethmann, Die Philosophie und die Wissenschaften (Fink). München (pp. 65–83).Google Scholar
- Nancy, J.-L. (2000). La pensée dérobée. Paris: Galilée.CrossRefGoogle Scholar
- Narasina, R. (2009). The chequered history of epistemology and science: The intuitionist interlude. In B. Ray (Éd.), Different types of history (pp. 106–112). Pearson Education India.Google Scholar
- Prabhavananda, & Isherwood, C. (Trans.). (1956). Bhagavad-Gita: The song of God. London: Phoenix House.Google Scholar
- Rahman, S., Redmond, J., & Clerbout, N. (2016) N. Objective Knowledge and the not Dispensability of Epistemic Subjects. Some remarks on Popper’s notion of objective knowledge. Cahiers d’Epistémologie (Vol. 5, pp. 25–53). L’Harmattan.Google Scholar
- Rahman, S., McConaughey, Z., Klev, A., & Clerbout, N. (2018). Immanent reasoning or equality in action: A plaidoyer for the play level. Dordrecht: Springer.CrossRefGoogle Scholar
- Reinach, A. (2012). The Apriori foundations of the civil law: Along with the lecture. In J. F. Crosby (Ed.). «Concerning phenomenology». Frankfurt: Ontos.Google Scholar
- Ricoeur, P. (2004). À l’école de la phénoménologie. Paris: J. Vrin.Google Scholar
- Shafiei, M. (2018). Meaning and Intentionality: A dialogical approach. London: College Publications.Google Scholar
- Sundholm, G. (1984). Brouwer’s anticipation of the principles of charity. Proceedings of the Aristotelian Society, 85, 263–276.CrossRefGoogle Scholar
- Sundholm, G. (2014). Constructive recursive functions, church’s thesis, and Brouwer’s theory of the creating subject: Afterthoughts on a Parisian joint session. Constructivity and computability in historical and philosophical perspective (pp. 1–35). Dordrecht: Springer.Google Scholar
- Troelstra, A. (1977). Choice sequences: A chapter of Intuitionist Mathematics. Oxford: Clarendon Press.Google Scholar
- Troelstra, A., & van Dalen, D. (1988). Constructivism in mathematics: An introduction (Vol. 1). Amsterdam: Elsevier.Google Scholar
- van Atten, M. (2002a). On Brouwer. Belmont, Calif.: Wadsworth Publishing Co Inc.Google Scholar
- van Atten, M. (2002b). Phenomenology’s reception of Brouwer’s choice sequences. In V. Peckhaus (Ed.), Oskar Becker und die Philosophie der Mathematik (pp. 101–107). München: Fink Verlag.Google Scholar
- van Atten, M. (2007). Brouwer meets Husserl: On the phenomenology of choice sequences. Netherlands: Springer.CrossRefGoogle Scholar
- van Atten, M. (2015). Troelstra’s Paradox and Markov’s Principle. In G. Alberts, L. Bergmans, & P. Muller (Eds.), Dutch significs and early criticism of the vienna circle. Dordrecht: Springer. (Forthcoming, Preprint on Hal, archives ouvertes).Google Scholar
- van Atten, M. (2018). The creating subject, the Brouwer-Kripke Schema, and infinite Proofs. Forthcoming in Indigationes Mathematica.Google Scholar
- van Atten, M., & van Dalen, D. (2002). Arguments for the continuity principle. The Bulletin of Symbolic Logic, 8(3), 329–347.CrossRefGoogle Scholar
- Van der Schaar, M. (2011). The cognitive act and the first-person perspective: An epistemology for constructive type theory. Synthese, 180, 391–417.CrossRefGoogle Scholar
- Wittgenstein, L. (1989). Philosophische Bemerkungen. In R. Rhees (Ed.). Frankfurt am Main: Suhrkamp.Google Scholar