Cryopreservation of Oocytes and Embryos

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh


The cryopreservation as a broad discipline entails techniques that permits freezing and freeze-thawing or vitrification-warming of biological materials with minimal loss in their biological functions. Cryopreservation is an integral component of modern biomedical sciences, assisted reproduction and conservation biology, and a fundamental subject itself. Somatic cells, stem cells, primordial germ cells, oocytes, embryos and ovarian tissue preserved aptly under ultralow temperature can endure preservation for unlimited time with almost negligible loss in metabolic and genetic eminence. Compared to conventional slow-freezing cryopreservation techniques, the emphasis is on simpler methods of cryopreservation using vitrification.

  • Cryopreservation is an integral component of biomedical sciences, agriculture, and animal-assisted reproduction

  • In view of limitations of slow freezing, alternative methods are developed

  • Vitrification is a cheaper and efficient method of cryopreservation.


Cryopreservation Vitrification Bio-banking Cryoprotective agents Livestock applications 


  1. Abe Y, Suwa Y, Asano T, Ueta YY, Kobayashi N, Ohshima N, Shirasuna S, Abdel-Ghani MA, Oi M, Kobayashi Y, Miyoshi M, Miyahara K, Suzuki H (2011) Cryopreservation of canine embryos. Biol Reprod 84(2):363–368. (Epub 2010 Oct 6)PubMedCrossRefGoogle Scholar
  2. Alexandratos N, Bruinsma J (2003) World agriculture: towards 2015/2030: an FAO perspective. Land Use Policy 20:375CrossRefGoogle Scholar
  3. Bang S, Shin H, Song H, Suh CS, Lim HJ (2014) Autophagic activation in vitrified-warmed mouse oocytes. Reproduction 148(1):11–19. (Epub 2014 Apr 23)PubMedCrossRefGoogle Scholar
  4. Begin I, Bhatia B, Baldassarre H, Dinnyes A, Keefer CL (2003) Cryopreservation of goat oocytes and in vivo derived 2- to 4-cell embryos using the cryoloop (CLV) and solid-surface vitrification (SSV) methods. Theriogenology 59(8):1839–1850PubMedCrossRefGoogle Scholar
  5. Brito DCC, Domingues SFS, Rodrigues APR, Figueiredo JR, Santos RR, Pieczarka JC (2018) Vitrification of domestic cat (Felis catus) ovarian tissue: effects of three different sugars. Cryobiology 83:97–99. (Epub 2018 Jun 13)PubMedCrossRefGoogle Scholar
  6. Canesin HS, Brom-de-Luna JG, Choi YH, Pereira AM, Macedo GG, Hinrichs K (2018) Vitrification of germinal-vesicle stage equine oocytes: effect of cryoprotectant exposure time on in-vitro embryo production. Cryobiology 81:185–191. (Epub 2018 Jan 3)PubMedCrossRefGoogle Scholar
  7. Dinnyés A, Dai Y, Jiang S, Yang X (2000) High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 63(2):513–518PubMedCrossRefGoogle Scholar
  8. Fathi M, Moawad AR, Badr MR (2018) Production of blastocysts following in vitro maturation and fertilization of dromedary camel oocytes vitrified at the germinal vesicle stage. PLoS One 13(3):e0194602. (eCollection 2018)PubMedPubMedCentralCrossRefGoogle Scholar
  9. Finger EB, Bischof JC (2018) Cryopreservation by vitrification: a promising approach for transplant organ banking. Curr Opin Organ Transplant 23(3):353–360. Scholar
  10. Galiguis J, Gómez MC, Leibo SP, Pope CE (2014) Birth of a domestic cat kitten produced by vitrification of lipid polarized in vitro matured oocytes. Cryobiology 68(3):459–466. (Epub 2014 Mar 11)PubMedCrossRefGoogle Scholar
  11. Gao HH, Li JT, Liu JJ, Yang QA, Zhang JM (2017) Autophagy inhibition of immature oocytes during vitrification-warming and in vitro mature activates apoptosis via caspase-9 and -12 pathway. Eur J Obstet Gynecol Reprod Biol 217:89–93. (Epub 2017 Aug 24)PubMedCrossRefGoogle Scholar
  12. Gautam SK, Singh B, Verma V, Palta P, Chauhan MS, Manik RS (2009) In vitro production of blastocysts from vitrified-warmed abattoir-derived buffalo (Bubalus bubalis) immature oocytes. Indian J Dairy Sci 62:495–502Google Scholar
  13. Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227PubMedCrossRefGoogle Scholar
  14. Kuwayama M, Vajta G, Ieda S, Kato O (2005) Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod Biomed Online 11(5):608–614PubMedCrossRefGoogle Scholar
  15. Landa V, Teplá O (1990) Cryopreservation of mouse 8-cell embryos in microdrops. Folia Biol (Praha) 36(3–4):153–158Google Scholar
  16. Lane M, Bavister BD, Lyons EA, Forest KT (1999) Containerless vitrification of mammalian oocytes and embryos. Nat Biotechnol 17(12):1234–1236. No abstract availablePubMedCrossRefGoogle Scholar
  17. Li R, Murphy CN, Spate L, Wax D, Isom C, Rieke A et al (2009) Production of piglets after cryopreservation of embryos using a centrifugation based method for delipation without micromanipulation. Biol Reprod 80:563–571PubMedPubMedCentralCrossRefGoogle Scholar
  18. Leibo SP (1986) Cryobiology: preservation of mammalian embryos. Basic Life Sci 37:251–272PubMedGoogle Scholar
  19. Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 247:C-125–C142CrossRefGoogle Scholar
  20. Men H, Zhao C, Si W, Murphy CN, Spate L, Liu Y et al (2011) Birth of piglets from in vitro-produced, zona-intact porcine embryos vitrified in a closed system. Theriogenology 76:280–289PubMedPubMedCentralCrossRefGoogle Scholar
  21. Mullen SF, Fahy GM (2012) A chronologic review of mature oocyte vitrification research in cattle, pigs, and sheep. Theriogenology 78(8):1709–1719. Scholar
  22. Park SY, Kim EY, Cui XS, Tae JC, Lee WD, Kim NH, Park SP, Lim JH (2006) Increase in DNA fragmentation and apoptosis-related gene expression in frozen-thawed bovine blastocysts. Zygote 14(2):125–131PubMedCrossRefGoogle Scholar
  23. Pegg DE (2015) Principles of cryopreservation. Methods Mol Biol 1257:3–19PubMedCrossRefGoogle Scholar
  24. Polge C, Smith AU, Parkes A (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:166CrossRefGoogle Scholar
  25. Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature 313(6003):573–575PubMedCrossRefGoogle Scholar
  26. Rall WF, Schmidt PM, Lin X, Brown SS, Ward AC, Hansen CT (2000) Factors affecting the efficiency of embryo cryopreservation and rederivation of rat and mouse models. ILAR J 41(4):221–227 (Review)PubMedCrossRefGoogle Scholar
  27. Renard JP, Babinet C (1984) High survival of mouse embryos after rapid freezing and thawing inside plastic straws with 1-2 propanediol as cryoprotectant. J Exp Zool 230(3):443–448PubMedCrossRefGoogle Scholar
  28. Singh B, Mal G, Singla SK (2017) Chapter 18 vitrification: a reliable method for cryopreservation of animal embryos. Methods Mol Biol 1568:243–249. Scholar
  29. Stewart S, He X (2018) Intracellular delivery of trehalose for cell banking. Langmuir. (Epub ahead of print)PubMedCrossRefGoogle Scholar
  30. Vajta G (2000) Vitrification of the oocytes and embryos of domestic animals. Anim Reprod Sci 60–61:357–364PubMedCrossRefGoogle Scholar
  31. Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greve T, Callesen H (1998) Open Pulled Straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 51:53–58PubMedCrossRefGoogle Scholar
  32. Wang N, Li CY, Zhu HB, Hao HS, Wang HY, Yan CL, Zhao SJ, Du WH, Wang D, Liu Y, Pang YW, Zhao XM (2017) Effect of vitrification on the mRNA transcriptome of bovine oocytes. Reprod Domest Anim 52(4):531–541. (Epub 2017 Mar 12)PubMedCrossRefGoogle Scholar
  33. Whittingham DG, Leibo SP, Mazur P (1972) Survival of mouse embryos from −196°C to −269°C. Science 178:411–412PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations