Revolutionary Reproduction Biotechnologies in Livestock: An Overview

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh


Developing, conserving, and disseminating best livestock is the prime concern of reproduction biotechnology. Breakthroughs in assisted reproduction technologies (ARTs) ranging from artificial insemination to advanced transgenesis and genome editing are successfully applied to enhance production and value addition of livestock products. While the emphasis is on proliferating high-yielding breeds, these animals are susceptible to biotic and abiotic stress. Therefore, native livestock resources need due scientific attention to conserve them and utilize their genetic merit.

  • Highlights

  • The ARTs have played a crucial role in enhancing livestock production from a domestic practice to a commercial enterprise

  • High-yielding animal breeds have certain limitations that make them unfit in low-input management

  • Stress-tolerance genes of native livestock are the potential sources to improve high-yielding animals to cope with imminent climatic stress.


Reproduction biotechniques Cryopreservation Sex selection Livestock Transgenesis 


  1. Almquist JO, Wiggin HB (1973) Survival of bull spermatozoa frozen and thawed by different methods in plastic straws. AI Digest 21:12Google Scholar
  2. Almquist JO, Glantz PJ, Shaffers HE (1949) The effect of a combination of penicillin and streptomycin upon the livability and bacterial content of bovine semen. J Dairy Sci 32:183–190CrossRefGoogle Scholar
  3. Alves BC, Hossepian de Lima VF, Moreira-Filho CA (2010) Development of Y-chromosome-specific SCAR markers conserved in taurine, zebu and bubaline cattle. Reprod Domest Anim 45(6):1047–1051. Scholar
  4. Bauman DE, Mather IH, Wall RJ, Lock AL (2006) Major advances associated with the biosynthesis of milk. J Dairy Sci 89(4):1235–1243. ReviewPubMedCrossRefGoogle Scholar
  5. Bondioli KR, Ellis SB, Pryor JH, Williams MW, Harpold MM (1989) The use of male-specific chromosomal DNA fragments to determine the sex of bovine preimplantation embryos. Theriogenology 31:95–104. Scholar
  6. Brackett BG, Bousquet D, Boice ML, Donawick WJ, Evans JF, Dressel MA (1982) Normal development following in vitro fertilization in the cow. Biol Reprod 27(1):147–158PubMedCrossRefGoogle Scholar
  7. Chang MC (1959) Fertilization of rabbit ova in vitro. Nature 184(Suppl 7):466–7. No abstract availablePubMedCrossRefGoogle Scholar
  8. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de León FA, Robl JM (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280(5367):1256–1258PubMedCrossRefGoogle Scholar
  9. Cibelli JB, Grant KA, Chapman KB, Cunniff K, Worst T, Green HL, Walker SJ, Gutin PH, Vilner L, Tabar V, Dominko T, Kane J, Wettstein PJ, Lanza RP, Studer L, Vrana KE, West MD (2002) Parthenogenetic stem cells in nonhuman primates. Science. 295(5556):819. No abstract availablePubMedCrossRefGoogle Scholar
  10. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini L, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 3:1231143Google Scholar
  11. Cran DG, Johnson LA, Miller NG, Cochrane D, Polge C (1993) Production of bovine calves following separation of X- and Y-chromosome bearing sperm and in vitro fertilisation. Vet Rec 132(2):40–41PubMedCrossRefGoogle Scholar
  12. de Souza GB, Costa J, da Cunha EV, Passos J, Ribeiro RP, Saraiva M, van den Hurk R, Silva J (2017) Bovine ovarian stem cells differentiate into germ cells and oocyte-like structures after culture in vitro. Reprod Domest Anim 52(2):243–250. (Epub 2016 Dec 7)PubMedCrossRefGoogle Scholar
  13. Deng S, Wang X, Wang Z, Chen S, Wang Y, Hao X, Sun T, Zhang Y, Lian Z, Liu Y (2017) In vitro production of functional haploid sperm cells from male germ cells of Saanen dairy goat. Theriogenology 1(90):120–128. (Epub 2016 Dec 2)CrossRefGoogle Scholar
  14. Do VH, Catt S, Kinder JE, Walton S, Taylor-Robinson AW (2019) Vitrification of invitro-derived bovine embryos: targeting enhancement of quality by refining technology and standardising procedures. Reprod Fertil Dev (Epub ahead of print)CrossRefGoogle Scholar
  15. Drost M, Brand A, Aarts MH (1976) A device for nonsurgical recovery of bovine embryos. Theriogenology 6:503–507CrossRefGoogle Scholar
  16. Dziuk PJ, Danker JD, Nichols JR, Petersen WE (1958) Problems associated with transfer of ova between cattle. Univ Minnesota Tech Bull 222:1–75Google Scholar
  17. Elsden RP, Hasler JF, Seidel GE Jr (1976) Non-surgical recovery of bovine eggs. Theriogenology 6:523–532PubMedCrossRefGoogle Scholar
  18. Elsden RP, Nelson LD, Seidel GE Jr (1978) Superovulating cows with follicle stimulating hormone and pregnant mare’s serum gonadotrophin. Theriogenology 9:17–26CrossRefGoogle Scholar
  19. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156PubMedPubMedCentralCrossRefGoogle Scholar
  20. Festing M (1972) Mouse strain identifi-cation. Nature 238:351–352PubMedCrossRefGoogle Scholar
  21. Forgason JL, Berry WT Jr, Goodwin DE (1961) Freezing bull semen in liquid nitrogen vapor without instrumentation. J Anim Sci 20:970Google Scholar
  22. Garner DL (2006) Flow cytometric sexing of mammalian sperm. Theriogenology. 65(5):943–57 (Epub 2005 Oct 20). ReviewPubMedCrossRefGoogle Scholar
  23. Garner DL, Gledhill BL, Pinkel D, Lake S, Stephenson D, Van Dilla MA, Johnson LA (1983) Quantification of the X- and Y-chromosome-bearing spermatozoa of domestic animals by flow cytometry. Biol Reprod 28(2):312–321PubMedCrossRefGoogle Scholar
  24. Garner DL, Evans KM, Seidel GE (2013) Sex-sorting sperm using flow cytometry/cell sorting. Methods Mol Biol. 927:279–95. ReviewGoogle Scholar
  25. Gray KR, Bondioli KR, Betts CL (1991) The commercial application of embryo splitting in beef cattle. Theriogenology 35:37–44CrossRefGoogle Scholar
  26. Hare WCD, Mitchell D, Betteridge KJ, Eaglesome MD, Randall GCB (1976) Sexing two-week old bovine embryos by chromosomal analysis prior to surgical transfer: preliminary methods and results. Theriogenology 5:243–253CrossRefGoogle Scholar
  27. Hasler JF (2014) Forty years of embryo transfer in cattle: a review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces. Theriogenology 81(1):152–169. Scholar
  28. Hendriks S, Dancet EA, van Pelt AM, Hamer G, Repping S (2015) Artificial gametes: a systematic review of biological progress towards clinical application. Hum Reprod Update 21(3):285–296. Scholar
  29. Herr CM, Reed KC (1991) Micronanipulation of bovine embryos for sex determination. Theriogenology 35:45–54CrossRefGoogle Scholar
  30. Hoffmann I (2010) Climate change and the characterization, breeding and conservation of animal genetic resources. Anim Genet 41(Suppl 1):32–46. Scholar
  31. Hoshino Y, Hayashi N, Taniguchi S, Kobayashi N, Sakai K, Otani T, Iritani A, Saeki K (2009) Resurrection of a bull by cloning from organs frozen without cryoprotectant in a −80 °C freezer for a decade. PLoS One 4(1):e4142. (Epub 2009 Jan 8)PubMedPubMedCentralCrossRefGoogle Scholar
  32. Iritani A, Niwa K (1977) Capacitation of bull spermatozoa and fertilization in vitro of cattle follicular oocytes matured in culture. J Reprod Fertil 50(1):119–121PubMedCrossRefGoogle Scholar
  33. Jaenisch R, Mintz B (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci U S A 71(4):1250–1254PubMedPubMedCentralCrossRefGoogle Scholar
  34. Johnson LA, Flook JP, Hawk HW (1989) Sex preselection in rabbits: live births from X and Y sperm separated by DNA and cell sorting. Biol Reprod 41(2):199–203PubMedCrossRefGoogle Scholar
  35. Kasinathan P, Wei H, Xiang T, Molina JA, Metzger J, Broek D, Kasinathan S, Faber DC, Allan MF (2015) Acceleration of genetic gain in cattle by reduction of generation interval. Sci Rep 2(5):8674. Scholar
  36. Lanza RP, Cibelli JB, Diaz F, Moraes CT, Farin PW, Farin CE, Hammer CJ, West MD, Damiani P (2000) Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2(2):79–90PubMedCrossRefGoogle Scholar
  37. Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z, Quan F, Zhang Y (2014) Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proc Biol Sci 281(1780):20133368. Print 2014 Apr 7PubMedCrossRefGoogle Scholar
  38. Liu Z, Cai Y, Liao Z, Xu Y, Wang Y, Wang Z, Jiang X, Li Y, Lu Y, Nie Y, Zhang X, Li C, Bian X, Poo M, Chang H, Sun Q (2018) Cloning of a gene-edited macaque monkey by somatic cell nuclear transfer. Natl Sci Rev (In oress). Scholar
  39. Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, Chuck J, Tan D, Knott GJ, Harrington LB, Al-Shayeb B, Wagner A, Brötzmann J, Staahl BT, Taylor KL, Desmarais J, Nogales E, Doudna JA (2019) CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. Scholar
  40. Looney CR, Lindsey BR, Gonseth CL, Johnson DL (1994) Commercial aspects of oocyte retrieval and in vitro fertilization (IVF) for embryo production in problem cows. Theriogenology 41:67–72CrossRefGoogle Scholar
  41. Lu KH, Gordon I, Chen HB, McGovern H (1987) In vitro culture of early bovine embryos derived from in vitro fertilization of follicular oocytes matured in vitro. In: Proceeding of Third Meeting of the European Embryo Transfer Association Lyon, France. Association of Embryo. Technology in Europe, Paris, France, pp 70Google Scholar
  42. Magata F, Tsuchiya K, Okubo H, Ideta A (2019) Application of intracytoplasmic sperm injection to the embryo production in aged cows. J Vet Med Sci 81(1):84–90. (Epub 2018 Nov 26)PubMedCrossRefGoogle Scholar
  43. Makoolati Z, Movahedin M, Forouzandeh-Moghadam M, Naghdi M, Koruji M (2017) Embryonic stem cell derived germ cells induce spermatogenesis after transplantation into the testes of an adult mouse azoospermia model. Clin Sci (Lond) 131(18):2381–2395. Print 2017 Sep 15PubMedCrossRefGoogle Scholar
  44. Martin GR (1981) Isolation of pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638PubMedCrossRefGoogle Scholar
  45. Moore SG, Hasler JF (2017) A 100-year review: reproductive technologies in dairy science. J Dairy Sci 100(12):10314–10331. Scholar
  46. Morohaku K, Tanimoto R, Sasaki K, Kawahara-Miki R, Kono T, Hayashi K, Hirao Y, Obata Y (2016) Complete in vitro generation of fertile oocytes from mouse primordial germ cells. Proc Natl Acad Sci USA 113(32):9021–9026. (Epub 2016 Jul 25)PubMedCrossRefGoogle Scholar
  47. Pieterse MC, Kappen KA, Kruip TA, Taverne MA (1988) Aspiration of bovine oocytes during transvaginal ultrasound scanning of the ovaries. Theriogenology 30(4):751–762PubMedCrossRefGoogle Scholar
  48. Polge C (1952) Fertilizing capacity of bull spermatozoa after freezing at 79 °C. Nature 169(4302):626–627PubMedCrossRefGoogle Scholar
  49. Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164(4172):666PubMedCrossRefGoogle Scholar
  50. Prather RS, Barnes FL, Sims MM, Robl JM, Eyestone WH, First NL (1987) Nuclear transplantation in the bovine embryo: assessment of donor nuclei and recipient oocyte. Biol Reprod 37(4):859–866PubMedCrossRefGoogle Scholar
  51. Robl JM, Wang Z, Kasinathan P, Kuroiwa Y (2007) Transgenic animal production and animal biotechnology. Theriogenology 67(1):127–133 (Epub 2006 Oct 27)PubMedCrossRefGoogle Scholar
  52. Roels K, Smits K, Ververs C, Govaere J, D’Herde K, Van Soom A (2018) Blastocyst production after intracytoplasmic sperm injection with semen from a stallion with testicular degeneration. Reprod Domest Anim 53(3):814–817. (Epub 2018 Mar 1)PubMedCrossRefGoogle Scholar
  53. Rowe RF, Del Campo MR, Eilts CL, French LR, Winch RP, Ginther OJ (1976) A single cannula technique for nonsurgical collection of ova from cattle. Theriogenology 6(5):471–483PubMedCrossRefGoogle Scholar
  54. Rowson LE (1951) Methods of inducing multiple ovulation in cattle. J Endocrinol 7(3):260–270PubMedCrossRefGoogle Scholar
  55. Rowson LE, Dowling DF (1949) An apparatus for the extraction of fertilized eggs from the living cow. Vet Rec 61:191Google Scholar
  56. Schulze M, Bortfeldt R, Schäfer J, Jung M, Fuchs-Kittowski F (2018) Effect of vibration emissions during shipping of artificial insemination doses on boar semen quality. Anim Reprod Sci 192:328–334. Scholar
  57. Seidel GE Jr (2009) Sperm sexing technology-the transition to commercial application. An introduction to the symposium “update on sexing mammalian sperm”. Theriogenology 71(1):1–3. (Epub 2008 Oct 23)PubMedCrossRefGoogle Scholar
  58. Selokar NL, Saini M, Palta P, Chauhan MS, Manik R, Singla SK (2014) Hope for restoration of dead valuable bulls through cloning using donor somatic cells isolated from cryopreserved semen. PLoS One 9(3):e90755. eCollection 2014PubMedPubMedCentralCrossRefGoogle Scholar
  59. Singh B, Chauhan MS, Singla SK, Gautam SK, Verma V, Manik RS, Singh AK, Sodhi M, Mukesh M (2009) Reproductive biotechniques in buffaloes (Bubalus bubalis): status, prospects and challenges. Reprod Fertil Dev 21(4):499–510. ReviewCrossRefGoogle Scholar
  60. Singh B, Mal G, Singla SK (2017a) Chapter 18 vitrification: a reliable method for cryopreservation of animal embryos. Methods Mol Biol 1568:243–249. Scholar
  61. Singh R, Mishra SK, Rajesh C, Dash SK, Niranjan SK, Kataria RS (2017b) Chilika- a distinct registered buffalo breed of India. Int J Livest Res 7(9):259–266. Scholar
  62. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow: environmental issues and options. FAO, Rome, ItalyGoogle Scholar
  63. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676 (Epub 2006 Aug 10)PubMedPubMedCentralCrossRefGoogle Scholar
  64. Tanne JH (2008) FDA approves use of cloned animals for food. BMJ 336(7637):176. No abstract availablePubMedPubMedCentralCrossRefGoogle Scholar
  65. Thornton PK (2010) Livestock production: recent trends, future prospects. Philos. Trans R Soc Lond B Biol Sci 365:2853–2867CrossRefGoogle Scholar
  66. Umbaugh RE (1949) Superovulation and ovum transfer in cattle. Am J Vet Res 10:295–305Google Scholar
  67. Valenzuela OA, Couturier-Tarrade A, Choi YH, Aubrière MC, Ritthaler J, Chavatte-Palmer P, Hinrichs K (2018) Impact of equine assisted reproductive technologies (standard embryo transfer or intracytoplasmicsperm injection (ICSI) with in vitro culture and embryo transfer) on placenta and foal morphometry and placental gene expression. Reprod Fertil Dev 30(2):371–379. Scholar
  68. Whittingham DG, Leibo SP, Mazur P (1972a) Survival of mouse embryos from −196 to −269 °C. Science 178:411–412PubMedCrossRefGoogle Scholar
  69. Whittingham DG, Leibo SP, Mazur P (1972b) Survival of mouse embryos frozen to −196 and −269 °C. Science 178(4059):411–414PubMedCrossRefGoogle Scholar
  70. Willadsen SM (1979) A method for culture of micromanipulated sheep embryos and its use to produce monozygotic twins. Nature 277(5694):298–300. No abstract availablePubMedCrossRefGoogle Scholar
  71. Willadsen SM (1986) Nuclear transplantation in sheep embryos. Nature 320(6057):63–65PubMedCrossRefGoogle Scholar
  72. Willadsen SM, Lehn-Jensen H, Fehilly CB, Newcomb R (1981) The production of monozygotic twins of preselected parentage by micromanipulation of non-surgically collected cow embryos. Theriogenology. 15(1):23–29. No abstract availablePubMedCrossRefGoogle Scholar
  73. Willett EL, Black WG, Casida LE, Stone WH, Buckner PJ (1951) Successful transplantation of a fertilized bovine ovum. Science 113(2931):247. No abstract availablePubMedCrossRefGoogle Scholar
  74. Wilmut I, Rowson LE (1973a) Experiments on the low-temperature preservation of cow embryos. Vet Rec 92(26):686–90. No abstract availablePubMedCrossRefGoogle Scholar
  75. Wilmut I, Rowson LE (1973b) The successful low-temperature preservation of mouse and cow embryos. J Reprod Fertil 33(2):352–353. No abstract availableCrossRefGoogle Scholar
  76. Wilmut I, Schnieke AE, McWhir J, Kind AJ (1997) Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–3. Erratum in: Nature 1997 Mar 13;386(6621):200Google Scholar
  77. Windig JJ, Engelsma KA (2010) Perspectives of genomics for genetic conservation of livestock. Conserv Genet 11:635–641CrossRefGoogle Scholar
  78. Yadav SK, Gangwar DK, Singh J, Tikadar CK, Khanna VV, Saini S, Dholpuria S, Palta P, Manik RS, Singh MK, Singla SK (2017) An immunological approach of sperm sexing and different methods for identification of X- and Y-chromosome bearing sperm. Vet World 10(5):498–504. Scholar
  79. Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, Xie M, Liu M, Guo X, Zheng Y, Feng G, Shi Q, Zhao XY, Sha J, Zhou Q (2016) Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18(3):330–340. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations