Advertisement

Insect Gut—A Treasure of Microbes and Microbial Enzymes

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 584 Downloads

Abstract

Several insects thrive on plant biomass for nutrition and habitation. Insect gut presents distinctive habitat for colonizing microbial genera and species. The insect gut microbiota contributes to digest plant materials, protecting host from parasites and pathogens, and modulation of immune system. Strategies should be evolved to unravel and exploit less known or obscure microbial diversities of these tiny creatures as sources of enzymes and raw materials having industrial applications, as well as developing insecticides by interrupting the cellulose degradation pathways in them.

Highlights

  • Insect gut is distinctive and favorable niche for microbial colonization

  • Some invertebrates and insects rely on gut microbiota to utilize plant biomass

  • The lignocelluloytic microbial genes enzymes indicate biotechnological applications.

Keywords

Insects Gut microbiota Enzymes Insect–microbiome interaction Commercial importance 

References

  1. Abe T, Bignell DE, Higashi M (2000) Termites: evolution, sociality, symbioses, ecology. Springer-Verlag, New YorkCrossRefGoogle Scholar
  2. Arango RA, Carlson CM, Currie CR, McDonald BR, Book AJ, Green F 3rd, Lebow NK, Raffa KF (2016) Antimicrobial activity of actinobacteria isolated from the guts of subterranean termites. Environ Entomol 45(6):1415–1423.  https://doi.org/10.1093/ee/nvw126CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arcila Hernández LM, Sanders JG, Miller GA, Ravenscraft A, Frederickson ME (2017) Ant-plant mutualism: a dietary by-product of a tropical ant’s macronutrient requirements. Ecology 98(12):3141–3151.  https://doi.org/10.1002/ecy.2036CrossRefPubMedGoogle Scholar
  4. Arneodo JD, Ortego J. Exploring the bacterial microbiota associated with native South American species of Aphis (Hemiptera: Aphididae). Environ Entomol. 2014 43(3):589–594.  https://doi.org/10.1603/en13324 (Epub 2014 Apr 14)CrossRefGoogle Scholar
  5. Bauer S, Tholen A, Overmann J, Brune A (2000) Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood- and soil-feeding termites by molecular and culture-dependent techniques. Arch Microbiol 173(2):126–137CrossRefGoogle Scholar
  6. Ben Guerrero E, Arneodo J, Bombarda Campanha R, Abrão de Oliveira P, Veneziano Labate MT, Regiani Cataldi T, Campos E, Cataldi A, Labate CA, Martins Rodrigues C, Talia P (2015) Prospection and evaluation of (Hemi) cellulolytic enzymes using untreated and pretreated biomasses in two argentinean native termites. PLoS One 10(8):e0136573.  https://doi.org/10.1371/journal.pone.0136573 (eCollection 2015)CrossRefGoogle Scholar
  7. Boyd BM, Allen JM, Nguyen NP, Vachaspati P, Quicksall ZS, Warnow T, Mugisha L, Johnson KP, Reed DL (2017) Primates, lice and bacteria: speciation and genome evolution in the symbionts of hominid lice. Mol Biol Evol 34(7):1743–1757.  https://doi.org/10.1093/molbev/msx117CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chaffron S, von Mering C (2007) Termites in the woodwork. Genome Biol 8:229CrossRefGoogle Scholar
  9. Chen B, Du K, Sun C, Vimalanathan A, Liang X, Li Y, Wang B, Lu X, Li L, Shao Y (2018) Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J 12(9):2252–2262.  https://doi.org/10.1038/s41396-018-0174-1 (Epub 2018 Jun 12)CrossRefPubMedPubMedCentralGoogle Scholar
  10. Do TH, Nguyen TT, Nguyen TN, Le QG, Nguyen C, Kimura K, Truong NH (2014) Mining biomass-degrading genes through Illumina-based de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam. J Biosci Bioeng 118(6):665–671.  https://doi.org/10.1016/j.jbiosc.2014.05.010CrossRefPubMedGoogle Scholar
  11. Douglas AE (2017) The B vitamin nutrition of insects: the contributions of diet, microbiome and horizontally acquired genes. Curr Opin Insect Sci. 23:65–69.  https://doi.org/10.1016/j.cois.2017.07.012 (Epub 2017 Aug 3). ReviewCrossRefGoogle Scholar
  12. Gales A, Chatellard L, Abadie M, Bonnafous A, Auer L, Carrère H, Godon JJ, Hernandez-Raquet G, Dumas C (2018) Screening of phytophagous and xylophagous insects guts microbiota abilities to degrade lignocellulose in bioreactor. Front Microbiol. 9:2222.  https://doi.org/10.3389/fmicb.2018.02222 (eCollection 2018)
  13. Gao G, Wang A, Gong BL, Li QQ, Liu YH, He ZM, Li G (2016) A novel metagenome-derived gene cluster from termite hindgut: Encoding phosphotransferase system components and high glucose tolerant glucosidase. Enzyme Microb Technol 84:24–31.  https://doi.org/10.1016/j.enzmictec.2015.12.005CrossRefPubMedGoogle Scholar
  14. Grigorescu AS, Renoz F, Sabri A, Foray V, Hance T, Thonart P (2017) Accessing the hidden microbial diversity of aphids: an illustration of how culture-dependent methods can be used to decipher the insect microbiota. Microb Ecol.  https://doi.org/10.1007/s00248-017-1092-xCrossRefGoogle Scholar
  15. Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23(6):1473–1496.  https://doi.org/10.1111/mec.12421 (Epub 2013 Aug 16)CrossRefPubMedGoogle Scholar
  16. Krams IA, Kecko S, Jõers P, Trakimas G, Elferts D, Krams R, Luoto S, Rantala MJ, Inashkina I, Gudrā D, Fridmanis D, Contreras-Garduño J, Grantiņa-Ieviņa L, Krama T (2017) Microbiome symbionts and diet diversity incur costs on the immune system of insect larvae. J Exp Biol. pii: jeb.169227.  https://doi.org/10.1242/jeb.169227CrossRefGoogle Scholar
  17. Liu N, Li H, Chevrette MG, Zhang L, Cao L, Zhou H, Zhou X, Zhou Z, Pope PB, Currie CR, Huang Y, Wang Q (2018) Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME J.  https://doi.org/10.1038/s41396-018-0255-1 (Epub ahead of print)CrossRefGoogle Scholar
  18. Manfredi AP, Perotti NI, Martínez MA (2015) Cellulose degrading bacteria isolated from industrial samples and the gut of native insects from Northwest of Argentina. J Basic Microbiol 55(12):1384–1393.  https://doi.org/10.1002/jobm.201500269CrossRefPubMedGoogle Scholar
  19. Manjula A, Pushpanathan M, Sathyavathi S, Gunasekaran P, Rajendhran J (2016) Comparative analysis of microbial diversity in termite gut and termite nest using ion sequencing. Curr Microbiol 72(3):267–275.  https://doi.org/10.1007/s00284-015-0947-yCrossRefPubMedGoogle Scholar
  20. Mikaelyan A, Meuser K, Brune A (2017) Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiol Ecol. 93(1). pii: fiw210 (Epub 2016 Oct 8)CrossRefGoogle Scholar
  21. Moll RM, Romoser WS, Modrzakowski MC, Moncayo AC, Lerdthusnee K (2001) Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J Med Entomol 38(1):29–32CrossRefGoogle Scholar
  22. Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI (2002) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol 32(7):777–784CrossRefGoogle Scholar
  23. Nimchua T, Thongaram T, Uengwetwanit T, Pongpattanakitshote S, Eurwilaichitr L (2012) Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J Microbiol Biotechnol 22(4):462–469CrossRefGoogle Scholar
  24. Peterson BF, Scharf ME (2016) Metatranscriptome analysis reveals bacterial symbiont contributions to lower termite physiology and potential immune functions. BMC Genom 17(1):772CrossRefGoogle Scholar
  25. Pourramezan Z, Ghezelbash GR, Romani B, Ziaei S, Hedayatkhah A (2012) Screening and identification of newly isolated cellulose-degrading bacteria from the gut of xylophagous termite Microcerotermes diversus (Silvestri). Mikrobiologiia 81(6):796–802CrossRefGoogle Scholar
  26. Rosenthal AZ, Zhang X, Lucey KS, Ottesen EA, Trivedi V, Choi HM, Pierce NA, Leadbetter JR (2013) Localizing transcripts to single cells suggests an important role of uncultured deltaproteobacteria in the termite gut hydrogen economy. Proc Natl Acad Sci USA 110(40):16163–16168.  https://doi.org/10.1073/pnas.1307876110CrossRefPubMedGoogle Scholar
  27. Rossmassler K, Dietrich C, Thompson C, Mikaelyan A, Nonoh JO, Scheffrahn RH, Sillam-Dussès D, Brune A (2015) Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites. Microbiome 26(3):56.  https://doi.org/10.1186/s40168-015-0118-1CrossRefGoogle Scholar
  28. Saadeddin A (2014) The complexities of hydrolytic enzymes from the termite digestive system. Crit Rev Biotechnol 34(2):115–122.  https://doi.org/10.3109/07388551.2012.727379 (Epub 2012 Oct 5)CrossRefPubMedGoogle Scholar
  29. Sapountzis P, de Verges J, Rousk K, Cilliers M, Vorster BJ, Poulsen M (2016) Potential for nitrogen fixation in the fungus-growing termite symbiosis. Front Microbiol 7:1993.  https://doi.org/10.3389/fmicb.2016.01993 (eCollection 2016)
  30. Scully ED, Geib SM, Hoover K, Tien M, Tringe SG, Barry KW, Glavina del Rio T, Chovatia M, Herr JR, Carlson JE (2013) Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS One. 8(9):e73827.  https://doi.org/10.1371/journal.pone.0073827 (eCollection 2013)CrossRefGoogle Scholar
  31. Sethi A, Kovaleva ES, Slack JM, Brown S, Buchman GW, Scharf ME (2013) A GHF7 cellulase from the protist symbiont community of Reticulitermes flavipes enables more efficient lignocellulose processing by host enzymes. Arch Insect Biochem Physiol 84(4):175–193.  https://doi.org/10.1002/arch.21135 (Epub 2013 Nov 1)CrossRefPubMedGoogle Scholar
  32. Shinzato N1, Muramatsu M, Matsui T, Watanabe Y (2007) Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Odontotermes formosanus. Biosci Biotechnol Biochem  71(4):906–9015 (Epub 2007 Apr 7)CrossRefGoogle Scholar
  33. Sugio A, Dubreuil G, Giron D, Simon JC (2015) Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms. J Exp Bot 66(2):467–478.  https://doi.org/10.1093/jxb/eru435 (Epub 2014 Nov 10)CrossRefPubMedGoogle Scholar
  34. Wang H, Lin H, Tran-Dinh N, Li D, Greenfield P, Midgley DJ (2015a) Draft genome sequence of clostridium sp. Ne2, clostridia from an enrichment culture obtained from Australian subterranean termite, Nasutitermes exitiosus. Genome Announc. 3(2). pii: e00304–15.  https://doi.org/10.1128/genomea.00304-15
  35. Wang H, Lin H, Tran-Dinh N, Li D, Greenfield P, Midgley DJ (2015b) Draft genome sequence of Ruminoclostridium sp. Ne3, Clostridia from an enrichment culture obtained from Australian Subterranean Termite, Nasutitermes exitiosus. Genome Announc.3(2). pii: e00305-15.  https://doi.org/10.1128/genomea.00305-15
  36. Zhou H, Guo W, Xu B, Teng Z, Tao D, Lou Y, Gao Y (2017) Screening and identification of lignin-degrading bacteria in termite gut and the construction of LiP-expressing recombinant Lactococcus lactis. Microb Pathog 112:63–69.  https://doi.org/10.1016/j.micpath.2017.09.047CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations