Advertisement

Next-Generation Sequencing Vis-à-Vis Veterinary Health Management

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 536 Downloads

Abstract

The global market for animal health products and treatments is a multibillion-dollar business. Cost of animal disease outbreak is likely to increase with urbanization and a growing demand for animal products. Combating emerging diseases caused by drug-resistant pathogenic microorganisms is challenging. The “omics” and genetic engineering and their applications in biotechnology industry have revolutionized animal healthcare management by improving rapidity, specificity, and sensitivity of diagnostic assays and decreased rates of false positive assays.

Highlights
  • Genome sequencing is now an integral component of livestock management

  • The technologies have provided valuable information for managing infectious diseases.

Keywords

Genome NextGen sequencing NGS technologies Livestock genome SNPs Genome data analysis Computational chemistry Bioinformatics methods 

References

  1. Anis E, Hawkins IK, Ilha MRS, Woldemeskel MW, Saliki JT, Wilkes RP (2018) Evaluation of targeted next-generation sequencing for detection of bovine pathogens in clinical samples. J Clin Microbiol 56(7). pii: e00399-18.  https://doi.org/10.1128/jcm.00399-18 (Print 2018 Jul)
  2. Aslam ML, Bastiaansen JW, Elferink MG, Megens HJ, Crooijmans RP, le Blomberg A, Fleischer RC, Van Tassell CP, Sonstegard TS, Schroeder SG, Groenen MA, Long JA (2012) Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo). BMC Genom 14(13):391.  https://doi.org/10.1186/1471-2164-13-391CrossRefGoogle Scholar
  3. Azhikina TL, Skvortsov TA, Radaeva TV, Mardanov AV, Ravin NV, Apt AS, Sverdlov ED (2010) A new technique for obtaining whole pathogen transcriptomes from infected host tissues. Biotechniques 48:139–144CrossRefGoogle Scholar
  4. Bai Y, Sarto M, Cavalcoli J (2012) Current status and future perspectives for sequencing livestock genomes. J Anim Sci Biotechnol 3(1):8CrossRefGoogle Scholar
  5. Bayliss SC, Verner-Jeffreys DW, Bartie KL, Aanensen DM, Sheppard SK, Adams A, Feil EJ (2017) The promise of whole genome pathogen sequencing for the molecular epidemiology of emerging aquaculture pathogens. Front Microbiol 8:121.  https://doi.org/10.3389/fmicb.2017.00121 (eCollection 2017)CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brooks-Pollock E, de Jong MC, Keeling MJ, Klinkenberg D, Wood JL (2015) Eight challenges in modelling infectious livestock diseases. Epidemics 10:1–5.  https://doi.org/10.1016/j.epidem.2014.08.005CrossRefGoogle Scholar
  7. Bryant J, Chewapreecha C, Bentley SD (2012) Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genomesequences. Future Microbiol 7(11):1283–1296.  https://doi.org/10.2217/fmb.12.108 (Review)CrossRefPubMedPubMedCentralGoogle Scholar
  8. Buermans HP, Den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842(10):1932–1941.  https://doi.org/10.1016/j.bbadis.2014.06.015 (Epub 2014 Jul 1. Review)CrossRefPubMedGoogle Scholar
  9. Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M (2010) Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog 6:e1000834.  https://doi.org/10.1371/journal.ppat.1000834CrossRefPubMedPubMedCentralGoogle Scholar
  10. Challis GL (2014) Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways. J Ind Microbiol Biotechnol 41:219–232.  https://doi.org/10.1007/s10295-013-1383-2CrossRefPubMedGoogle Scholar
  11. Deurenberg RH, Bathoorn E, Chlebowicz MA, Couto N, Ferdous M, García-Cobos S, Kooistra-Smid AM, Raangs EC, Rosema S, Veloo AC, Zhou K, Friedrich AW, Rossen JW (2017) Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol 10(243):16–24.  https://doi.org/10.1016/j.jbiotec.2016.12.022CrossRefGoogle Scholar
  12. Diaz-Sanchez S, Hanning I, Pendleton S, D’Souza D (2013) Next-generation sequencing: the future of molecular genetics in poultry production and food safety. Poult Sci 92(2):562–572.  https://doi.org/10.3382/ps.2012-02741 (Review)CrossRefGoogle Scholar
  13. Djari A, Esquerré D, Weiss B, Martins F, Meersseman C, Boussaha M, Klopp C, Rocha D (2013) Gene-based single nucleotide polymorphism discovery in bovine muscle using next-generation transcriptomic sequencing. BMC Genom 14:307.  https://doi.org/10.1186/1471-2164-14-307CrossRefGoogle Scholar
  14. Feng J, Lupien A, Gingras H, Wasserscheid J, Dewar K, Légaré D, Ouellette M (2009) Genome sequencing of linezolid-resistant Streptococcus pneumoniae mutants reveals novel mechanisms of resistance. Genome Res 19(7):1214–1223.  https://doi.org/10.1101/gr.089342.108CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ghosh M, Sharma N, Singh AK, Gera M, Pulicherla KK, Jeong DK (2018) Transformation of animal genomics by next-generation sequencing technologies: a decade of challenges and their impact on genetic architecture. Crit Rev Biotechnol 38(8):1157–1175.  https://doi.org/10.1080/07388551.2018.1451819CrossRefPubMedGoogle Scholar
  16. Gibbs EP (2005) Emerging zoonotic epidemics in the interconnected global community. Vet Rec. 157(22):673–9CrossRefGoogle Scholar
  17. Gomez-Escribano JP, Castro JF, Razmilic V, Chandra G, Andrews B, Asenjo JA, Bibb MJ (2015) The Streptomyces leeuwenhoekii genome: de novo sequencing and assembly in single contigs of the chromosome, circular plasmid pSLE1 and linear plasmid pSLE2. BMC Genom 30(16):485.  https://doi.org/10.1186/s12864-015-1652-8CrossRefGoogle Scholar
  18. Greenwood JM, Ezquerra AL, Behrens S, Branca A, Mallet L (2016) Current analysis of host-parasite interactions with a focus on next generation sequencing data. Zoology (Jena) 119(4):298–306.  https://doi.org/10.1016/j.zool.2016.06.010CrossRefGoogle Scholar
  19. Greub G, Kebbi-Beghdadi C, Bertelli C, Collyn F, Riederer BM, Yersin C, Croxatto A, Raoult D (2009) High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach. PLoS ONE 4(12):e8423.  https://doi.org/10.1371/journal.pone.0008423CrossRefPubMedPubMedCentralGoogle Scholar
  20. Iheshiulor OO, Woolliams JA, Yu X, Wellmann R, Meuwissen TH (2016) Within- and across-breed genomic prediction using whole-genome sequence and single nucleotide polymorphism panels. Genet Sel Evol 19(48):15.  https://doi.org/10.1186/s12711-016-0193-1CrossRefGoogle Scholar
  21. Kim M, Park T, Yu Z (2017) Metagenomic investigation of gastrointestinal microbiome in cattle. Asian Aust J Anim Sci 30:1515CrossRefGoogle Scholar
  22. Langridge GC, Phan MD, Turner DJ, Perkins TT, Parts L, Haase J, Charles I, Maskell DJ, Peters SE, Dougan G, Wain J, Parkhill J, Turner AK (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19(12):2308–2316.  https://doi.org/10.1101/gr.097097.109CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lefrançois T, Pineau T (2014) Public health and livestock: emerging diseases in food animals. Anim Front 4(1):4–6CrossRefGoogle Scholar
  24. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ 3rd, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, DeJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin CW, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli KP, Parker HG, Pollinger JP, Searle SM, Sutter NB, Thomas R, Webber C, Baldwin J, Abebe A, Abouelleil A, Aftuck L, Ait-Zahra M, Aldredge T, Allen N, An P, Anderson S, Antoine C, Arachchi H, Aslam A, Ayotte L, Bachantsang P, Barry A, Bayul T, Benamara M, Berlin A, Bessette D, Blitshteyn B, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Brown A, Cahill P, Calixte N, Camarata J, Cheshatsang Y, Chu J, Citroen M, Collymore A, Cooke P, Dawoe T, Daza R, Decktor K, DeGray S, Dhargay N, Dooley K, Dooley K, Dorje P, Dorjee K, Dorris L, Duffey N, Dupes A, Egbiremolen O, Elong R, Falk J, Farina A, Faro S, Ferguson D, Ferreira P, Fisher S, FitzGerald M, Foley K, Foley C, Franke A, Friedrich D, Gage D, Garber M, Gearin G, Giannoukos G, Goode T, Goyette A, Graham J, Grandbois E, Gyaltsen K, Hafez N, Hagopian D, Hagos B, Hall J, Healy C, Hegarty R, Honan T, Horn A, Houde N, Hughes L, Hunnicutt L, Husby M, Jester B, Jones C, Kamat A, Kanga B, Kells C, Khazanovich D, Kieu AC, Kisner P, Kumar M, Lance K, Landers T, Lara M, Lee W, Leger JP, Lennon N, Leuper L, LeVine S, Liu J, Liu X, Lokyitsang Y, Lokyitsang T, Lui A, Macdonald J, Major J, Marabella R, Maru K, Matthews C, McDonough S, Mehta T, Meldrim J, Melnikov A, Meneus L, Mihalev A, Mihova T, Miller K, Mittelman R, Mlenga V, Mulrain L, Munson G, Navidi A, Naylor J, Nguyen T, Nguyen N, Nguyen C, Nguyen T, Nicol R, Norbu N, Norbu C, Novod N, Nyima T, Olandt P, O’Neill B, O’Neill K, Osman S, Oyono L, Patti C, Perrin D, Phunkhang P, Pierre F, Priest M, Rachupka A, Raghuraman S, Rameau R, Ray V, Raymond C, Rege F, Rise C, Rogers J, Rogov P, Sahalie J, Settipalli S, Sharpe T, Shea T, Sheehan M, Sherpa N, Shi J, Shih D, Sloan J, Smith C, Sparrow T, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Stone S, Sykes S, Tchuinga P, Tenzing P, Tesfaye S, Thoulutsang D, Thoulutsang Y, Topham K, Topping I, Tsamla T, Vassiliev H, Venkataraman V, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Yang S, Yang X, Young G, Yu Q, Zainoun J, Zembek L, Zimmer A, Lander ES (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819CrossRefGoogle Scholar
  25. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30(5):434–439.  https://doi.org/10.1038/nbt.2198 (Erratum. In: Nat Biotechnol. 2012 Jun; 30(6):562)CrossRefGoogle Scholar
  26. Martin J, Zhu W, Passalacqua KD, Bergman N, Borodovsky M (2010) Bacillus anthracis genome organization in light of whole transcriptome sequencing. BMC Bioinform 11(Suppl 3):S10.  https://doi.org/10.1186/1471-2105-11-S3-S10CrossRefGoogle Scholar
  27. McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT (2013) Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol 66(2):526–538.  https://doi.org/10.1016/j.ympev.2011.12.007CrossRefPubMedGoogle Scholar
  28. Mertes F, Elsharawy A, Sauer S, van Helvoort JM, van der Zaag PJ, Franke A, Nilsson M, Lehrach H, Brookes AJ (2011) Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief Funct Genom 10(6):374–386.  https://doi.org/10.1093/bfgp/elr033CrossRefGoogle Scholar
  29. Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P (2013) Metagenomics for pathogen detection in public health. Genome Med 5(9):81.  https://doi.org/10.1186/gm485 (eCollection 2013)CrossRefPubMedPubMedCentralGoogle Scholar
  30. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92(5):255–264.  https://doi.org/10.1016/j.ygeno.2008.07.001CrossRefGoogle Scholar
  31. Nakano K, Shiroma A, Shimoji M, Tamotsu H, Ashimine N, Ohki S, Shinzato M, Minami M, Nakanishi T, Teruya K, Satou K, Hirano T (2017) Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area. Hum Cell 30(3):149–161.  https://doi.org/10.1007/s13577-017-0168-8CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu ZL, Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA, Rothschild MF, Smith TP, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann RT, Schook LB, Groenen MA (2009) Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS ONE 4(8):e6524.  https://doi.org/10.1371/journal.pone.0006524CrossRefPubMedPubMedCentralGoogle Scholar
  33. Senol Cali D, Kim JS, Ghose S, Alkan C, Mutlu O (2018) Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions. Brief Bioinform.  https://doi.org/10.1093/bib/bby017
  34. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermüller J, Reinhardt R, Stadler PF, Vogel J (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464(7286):250–255.  https://doi.org/10.1038/nature08756CrossRefGoogle Scholar
  35. Sharma D, Mal G, Kannan A, Bhar R, Sharma R, Singh B (2017) Degradation of euptox A by tannase-producing rumen bacteria from migratory goats. J Appl Microbiol 123(5):1194–1202.  https://doi.org/10.1111/jam.13563 (Epub 2017 Sep 19)CrossRefGoogle Scholar
  36. Sharma D, Sharma A, Verma SK, Singh B (2018) Targeting metabolic pathways proteins of Orientia tsutsugamushi using combined hierarchical approach to combat scrub typhus J Mol Recognit. 32(4):e2766.  https://doi.org/10.1002/jmr.2766CrossRefPubMedGoogle Scholar
  37. Singh B, Gautam SK, Verma V, Kumar M, Singh B (2008) Metagenomics in animal gastrointestinal ecosystem: potential biotechnological prospects. Anaerobe 14(3):138–144.  https://doi.org/10.1016/j.anaerobe.2008.03.002 (Epub 2008 Mar 26. Review)CrossRefGoogle Scholar
  38. Singh B, Bhat TK, Sharma OP, Kanwar SS, Rahi P, Gulati A (2012) Isolation of tannase-producing Enterobacter ludwigii GRT-1 from the rumen of migratory goats. Small Rumin Res 102(2–3):172–176CrossRefGoogle Scholar
  39. Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11(1):9–16.  https://doi.org/10.1038/nrg2695CrossRefPubMedGoogle Scholar
  40. Srivatsan A, Han Y, Peng J, Tehranchi AK, Gibbs R, Wang JD, Chen R (2008) High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genet 4(8):e1000139.  https://doi.org/10.1371/journal.pgen.1000139CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tellam RL, Lemay DG, Van Tassell CP, Lewin HA, Worley KC, Elsik CG (2009) Unlocking the bovine genome. BMC Genom 24(10):193.  https://doi.org/10.1186/1471-2164-10-193CrossRefGoogle Scholar
  42. Tomley FM, Shirley MW (2009) Livestock infectious diseases and zoonoses. Philos Trans R Soc Lond B Biol Sci 364(1530):2637–2642.  https://doi.org/10.1098/rstb.2009.0133CrossRefPubMedPubMedCentralGoogle Scholar
  43. Urbaniak C, Sielaff AC, Frey KG, Allen JE, Singh N, Jaing C, Wheeler K, Venkateswaran K (2018) Detection of antimicrobial resistance genes associated with the International Space Station environmental surfaces. Sci Rep 8:814.  https://doi.org/10.1038/s41598-017-18506-4CrossRefPubMedPubMedCentralGoogle Scholar
  44. van Opijnen T, Bodi KL, Camilli A (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6(10):767–772.  https://doi.org/10.1038/nmeth.1377CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wang C, Mitsuya Y, Gharizadeh B, Ronaghi M, Shafer RW (2007) Characterization of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resistance. Genome Res 17(8):1195–1201CrossRefGoogle Scholar
  46. Williams JL (2005) The use of marker-assisted selection in animal breeding and biotechnology. Rev Sci Tech 24(1):379–391CrossRefGoogle Scholar
  47. Williams JL, Iamartino D, Pruitt KD, Sonstegard T, Smith TPL, Low WY, Biagini T, Bomba L, Capomaccio S, Castiglioni B, Coletta A, Corrado F, Ferré F, Iannuzzi L, Lawley C, Macciotta N, McClure M, Mancini G, Matassino D, Mazza R, Milanesi M, Moioli B, Morandi N, Ramunno L, Peretti V, Pilla F, Ramelli P, Schroeder S, Strozzi F, Thibaud-Nissen F, Zicarelli L, Ajmone-Marsan P, Valentini A, Chillemi G, Zimin A (2017) Genome assembly and transcriptome resource for river buffalo, Bubalus bubalis (2n = 50). Gigascience 6(10):1–6.  https://doi.org/10.1093/gigascience/gix088CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. J Genet Genomics. 38(3):95–109.  https://doi.org/10.1016/j.jgg.2011.02.003CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations