Advertisement

Genome Editing in Farm Animals

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 557 Downloads

Abstract

Due to several reasons, animals are preferred for producing recombinant therapeutics. At present, it is possible to synthesize genes, or extract genes of interest, and introduce them into across cell membranes by means of viral vectors, electroporation or mechanically. The newly introduced enzymatic methods of gene modifications are easy, precise, and cheaper and used in human gene therapies, biomedical sciences, and livestock genome manipulation. Gene-edited livestock is poised to become a commercial reality for producing transgenic or model animals.

Highlights
  • Repertoire of molecular tools allow precise modification of genome at rapid pace and precision

  • Instead of yeasts and animals cells, the animals are preferred for producing recombinant therapeutic proteins

  • Significant improvements are made in modifying genomes by enzyme-catalyzed methods of gene manipulation.

Keywords

Genome editing Gene modification enzymes Enzyme-catalyzed transgenesis Designer nucleases CRISPR/cas9 ZFNs TALENs RNA-guided genome modification 

References

  1. Alic N, Hoddinott MP, Foley A, Slack C, Piper MD, Partridge L (2012) Detrimental effects of RNAi: a cautionary note on its use in Drosophila ageing studies. PLoS ONE 7(9):e45367CrossRefGoogle Scholar
  2. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712CrossRefGoogle Scholar
  3. Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6(6):507CrossRefGoogle Scholar
  4. Cohen J (2018) In dogs, CRISPR fixes a muscular dystrophy. Science 361(6405):835.  https://doi.org/10.1126/science.361.6405.835 (No abstract available)CrossRefPubMedGoogle Scholar
  5. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini L, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 3:1231143Google Scholar
  6. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607.  https://doi.org/10.1038/nature09886
  7. Deng Q, Chen Z, Shi L, Lin H (2018) Developmental progress of CRISPR/Cas9 and its therapeutic applications for HIV-1 infection. Rev Med Virol 28(5):e1998.  https://doi.org/10.1002/rmv.1998 (Epub 2018 Jul 19, Review)
  8. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343.  https://doi.org/10.1093/nar/gkt135 (Epub 2013 Mar 4)CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122(3):473–483CrossRefGoogle Scholar
  10. Ding S, Xu T, Wu X (2014) Generation of genetically engineered mice by the piggyBac transposon system. Methods Mol Biol 1194:171–185.  https://doi.org/10.1007/978-1-4939-1215-5_9CrossRefPubMedGoogle Scholar
  11. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811CrossRefGoogle Scholar
  12. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3):279–284.  https://doi.org/10.1038/nbt.2808 (Epub 2014 Jan 26)CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405CrossRefGoogle Scholar
  14. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433.  https://doi.org/10.1126/science.1172447CrossRefPubMedPubMedCentralGoogle Scholar
  15. Grainge I, Jayaram M (1999) The integrase family of recombinase: organization and function of the active site. Mol Microbiol 33(3):449–456 (Review)Google Scholar
  16. Guo X, Zhang T, Hu Z, Zhang Y, Shi Z, Wang Q, Cui Y, Wang F, Zhao H, Chen Y (2014) Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development 141(3):707–714.  https://doi.org/10.1242/dev.099853 (Epub 2014 Jan 8)CrossRefPubMedGoogle Scholar
  17. Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24(3):372–375.  https://doi.org/10.1038/cr.2014.11 (Epub 2014 Jan 31, No abstract available)
  18. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229.  https://doi.org/10.1038/nbt.2501 (Epub 2013 Jan 29)CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433CrossRefGoogle Scholar
  20. Ivics Z, Garrels W, Mátés L, Yau TY, Bashir S, Zidek V, Landa V, Geurts A, Pravenec M, Rülicke T, Kues WA, Izsvák Z (2014) Germline transgenesis in pigs by cytoplasmic microinjection of sleeping beauty transposons. Nat Protoc 9(4):810–827.  https://doi.org/10.1038/nprot.2014.010 (Epub 2014 Mar 13)CrossRefGoogle Scholar
  21. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239.  https://doi.org/10.1038/nbt.2508 (Epub 2013 Jan 29)CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821.  https://doi.org/10.1126/science.1225829 (Epub 2012 Jun 28)CrossRefPubMedPubMedCentralGoogle Scholar
  23. Katter K, Geurts AM, Hoffmann O, Mátés L, Landa V, Hiripi L, Moreno C, Lazar J, Bashir S, Zidek V, Popova E, Jerchow B, Becker K, Devaraj A, Walter I, Grzybowksi M, Corbett M, Filho AR, Hodges MR, Bader M, Ivics Z, Jacob HJ, Pravenec M, Bosze Z, Rülicke T, Izsvák Z (2013) Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits. FASEB J 27(3):930–941.  https://doi.org/10.1096/fj.12-205526 (Epub 2012 Nov 29)CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495.  https://doi.org/10.1038/nature16526 (Epub 2016 Jan 6)CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kues WA (2018) Progressive refinements in transgenesis and genetic engineering in livestock. ISSRF Newletter 22:21–24Google Scholar
  26. Li Z, Zeng F, Meng F, Xu Z, Zhang X, Huang X, Tang F, Gao W, Shi J, He X, Liu D, Wang C, Urschitz J, Moisyadi S, Wu Z (2014) Generation of transgenic pigs by cytoplasmic injection of piggyBac transposase-based pmGENIE-3 plasmids. Biol Reprod 90(5):93.  https://doi.org/10.1095/biolreprod.113.116905 (Print 2014 May)
  27. Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z, Quan F, Zhang Y (2014) Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proc Biol Sci 281(1780):20133368.  https://doi.org/10.1098/rspb.2013.3368 (Print 2014 Apr 7)CrossRefPubMedPubMedCentralGoogle Scholar
  28. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJ, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13(11):722–736.  https://doi.org/10.1038/nrmicro3569 (Epub 2015 Sep 28, Review)
  29. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826.  https://doi.org/10.1126/science.1232033 (Epub 2013 Jan 3)CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mattei TA (2018) The CRISPR-Cas9 genome editing system: not as precise as previously believed. World Neurosurg 118:377–378.  https://doi.org/10.1016/j.wneu.2018.08.042 (Epub 2018 Aug 14)CrossRefPubMedGoogle Scholar
  31. Meyer M, de Angelis MH, Wurst W, Kühn R (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci U S A 107(34):15022–15026.  https://doi.org/10.1073/pnas.1009424107 (Epub 2010 Aug 4)CrossRefPubMedPubMedCentralGoogle Scholar
  32. Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156(4):836–843.  https://doi.org/10.1016/j.cell.2014.01.027 (Epub 2014 Jan 30)CrossRefPubMedGoogle Scholar
  33. Pennisi E (2013) The CRISPR craze. Science 341(6148):833–836.  https://doi.org/10.1126/science.341.6148.833 (No abstract available)CrossRefPubMedGoogle Scholar
  34. Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham AJ, McLaren DG, Whitelaw CB, Fahrenkrug SC (2015) Genome edited sheep and cattle. Transgenic Res 24(1):147–153.  https://doi.org/10.1007/s11248-014-9832-x (Epub 2014 Sep 10)CrossRefPubMedGoogle Scholar
  35. Pyne ME, Moo-Young M, Chung DA, Chou CP (2015) Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol 81(15):5103–5114.  https://doi.org/10.1128/AEM.01248-15 (Epub 2015 May 22)CrossRefPubMedPubMedCentralGoogle Scholar
  36. Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34(3):339–344.  https://doi.org/10.1038/nbt.3481 (Epub 2016 Jan 20)CrossRefPubMedGoogle Scholar
  37. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282.  https://doi.org/10.1093/nar/gkr606 (Epub 2011 Aug 3)CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schetelig MF, Yan Y, Zhao Y, Handler AM (2018) Genomic targeting by recombinase-mediated cassette exchange in the spotted wing drosophila, Drosophila suzukii. Insect Mol Biol.  https://doi.org/10.1111/imb.12537 (Epub ahead of print)
  39. Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X (2013) Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23(5):720–723.  https://doi.org/10.1038/cr.2013.46 (Epub 2013 Apr 2, No abstract available)
  40. Smith J, Grizot S, Arnould S, Duclert A, Epinat JC, Chames P, Prieto J, Redondo P, Blanco FJ, Bravo J, Montoya G, Pâques F, Duchateau P (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34(22):e149 (Epub 2006 Nov 27)Google Scholar
  41. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62–67.  https://doi.org/10.1038/nature13011 (Epub 2014 Jan 29)CrossRefPubMedPubMedCentralGoogle Scholar
  42. Swarts DC, Mosterd C, van Passel MW, Brouns SJ (2012) CRISPR interference directs strand specific spacer acquisition. PLoS One 7(4):e35888.  https://doi.org/10.1371/journal.pone.0035888 (Epub 2012 Apr 27)
  43. Tan W, Proudfoot C, Lillico SG, Whitelaw CB (2016) Gene targeting, genome editing: from Dolly to editors. Transgenic Res 25(3):273–287.  https://doi.org/10.1007/s11248-016-9932-x (Epub 2016 Feb 3)CrossRefPubMedPubMedCentralGoogle Scholar
  44. Urschitz J, Moisyadi S (2013) Transpositional transgenesis with piggyBac. Mob Genet Elements 3(3):e25167 (Epub 2013 May 24)Google Scholar
  45. Xu Y, Liu S, Yu G, Chen J, Chen J, Xu X, Wu Y, Zhang A, Dowdy SF, Cheng G (2008) Excision of selectable genes from transgenic goat cells by a protein transducible TAT-Cre recombinase. Gene 419(1–2):70–74.  https://doi.org/10.1016/j.gene.2008.04.020 (Epub 2008 May 13)CrossRefPubMedGoogle Scholar
  46. Yang L, Mali P, Kim-Kiselak C, Church G (2014) CRISPR-Cas-mediated targeted genome editing in human cells. Methods Mol Biol 1114:245–267.  https://doi.org/10.1007/978-1-62703-761-7_16CrossRefPubMedGoogle Scholar
  47. Yin L, Hu S, Mei S, Sun H, Xu F, Li J, Zhu W, Liu X, Zhao F, Zhang D, Cen S, Liang C, Guo F (2018) CRISPR/Cas9 inhibits multiple steps of HIV-1 infection. Hum Gene Ther 29(11):1264–1276.  https://doi.org/10.1089/hum.2018.018CrossRefPubMedGoogle Scholar
  48. Yu Y, Wang Y, Tong Q, Liu X, Su F, Quan F, Guo Z, Zhang Y (2013) A site-specific recombinase-based method to produce antibiotic selectable marker free transgeniccattle. PLoS One 8(5):e62457.  https://doi.org/10.1371/journal.pone.0062457 (Print 2013)
  49. Wang K, Ouyang H, Xie Z, Yao C, Guo N, Li M, Jiao H, Pang D (2015) Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep 13(5):16623.  https://doi.org/10.1038/srep16623CrossRefGoogle Scholar
  50. Wang K, Tang X, Xie Z, Zou X, Li M, Yuan H, Guo N, Ouyang H, Jiao H, Pang D (2017) CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Res 26(6):799–805.  https://doi.org/10.1007/s11248-017-0044-zCrossRefPubMedGoogle Scholar
  51. Wang S, Ren S, Bai R, Xiao P, Zhou Q, Zhou Y, Zhou Z, Niu Y, Ji W, Chen Y (2018) No off-target mutations in functional genome regions of a CRISPR/Cas9-generated monkey model of muscular dystrophy. J Biol Chem 293(30):11654–11658.  https://doi.org/10.1074/jbc.AC118.004404CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations