Advertisement

Big from Small: MicroRNA in Relation to Veterinary Sciences

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 538 Downloads

Abstract

Eukaryotic transcriptome sequence data reveals that majority of the genome is transcribed into distinct noncoding RNA species, called microRNAs (miRNA). The miRNA is subset of tiny noncoding RNAs, about 21–23 nucleotides long, that play a role in controlling cognate mRNA degradation by cleavage or inhibiting the translational process. miRNA is popularly referred to as “micromanager of gene regulation.” In humans, miRNA disruption is correlated to diseases like cancers. In addition, miRNA has important implications in diseases and biological processes such as development, memory establishment, cell proliferation, apoptosis, and infections. Knowledge acquired from understanding miRNA pathway should be exploited to design artificial miRNAs with potential uses in therapeutics and livestock development.

Highlights
  • miRNAs are abundantly present in many organisms

  • The impact of miRNA-driven gene regulation is enormous; hence, it is a key field of study

  • In view of their involvements in diseases and biological processes, miRNAs offer opportunities to develop curative interventions.

Keywords

miRNAs Noncoding RNAs miRNAs diversity Biological functions Developmental biology Microbial inhibition 

References

  1. Ashraf SI, McLoon AL, Sclarsic SM, Kunes S (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124(1):191–205. Erratum in: Cell. 2006 Aug 25;126(4):812CrossRefGoogle Scholar
  2. Bellon M, Lepelletier Y, Hermine O, Nicot C (2009) Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia. Blood 113(20):4914–4917.  https://doi.org/10.1182/blood-2008-11-189845 (Epub 2009 Feb 26)CrossRefPubMedPubMedCentralGoogle Scholar
  3. Broderick JA, Zamore PD (2011) MicroRNA therapeutics. Gene Ther. 18(12):1104–1110.  https://doi.org/10.1038/gt.2011.50 (Epub 2011 Apr 28). ReviewCrossRefGoogle Scholar
  4. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12):1957–1966 (Epub 2004 Nov 3)CrossRefGoogle Scholar
  5. Chhabra R, Adlakha YK, Hariharan M, Scaria V, Saini N (2009) Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells. PLoS ONE 4(6):e5848.  https://doi.org/10.1371/journal.pone.0005848CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 102(39):13944–13949. (Epub 2005 Sep 15). Erratum in: Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2464CrossRefGoogle Scholar
  7. Elmén J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Hedtjärn M, Hansen JB, Hansen HF, Straarup EM, McCullagh K, Kearney P, Kauppinen S (2008) Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 36(4):1153–1162 (Epub 2007 Dec 23)CrossRefGoogle Scholar
  8. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–144CrossRefGoogle Scholar
  9. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1):23–34CrossRefGoogle Scholar
  10. Gusev Y, Brackett DJ (2007) MicroRNA expression profiling in cancer from a bioinformatics prospective. Expert Rev Mol Diagn 7(6):787–792. ReviewCrossRefGoogle Scholar
  11. Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ (2005) The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A 102(31):10898–10903 (Epub 2005 Jul 22)CrossRefGoogle Scholar
  12. Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H (2005) Stem cell division is regulated by the microRNA pathway. Nature 435(7044):974–978 (Epub 2005 Jun 8)CrossRefGoogle Scholar
  13. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833CrossRefGoogle Scholar
  14. Hou X, Tang Z, Liu H, Wang N, Ju H, Li K (2012) Discovery of MicroRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs. PLoS One 7(12):e52123.  https://doi.org/10.1371/journal.pone.0052123 (Epub 2012 Dec 21)CrossRefGoogle Scholar
  15. Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293(5538):2269–2271 (Epub 2001 Aug 2)CrossRefGoogle Scholar
  16. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov. 11(2):125–140.  https://doi.org/10.1038/nrd3625 ReviewCrossRefPubMedPubMedCentralGoogle Scholar
  17. Kozomara A, Birgaoanu M, Griffiths-Jones S (2018) miRBase: from microRNA sequences to function. Nucleic Acids Res.  https://doi.org/10.1093/nar/gky1141 (Epub ahead of print)CrossRefGoogle Scholar
  18. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with’antagomirs’. Nature 438(7068):685–689 (Epub 2005 Oct 30)CrossRefGoogle Scholar
  19. Kuo CH, Ying SY (2012) Advances in microRNA-mediated reprogramming technology. Stem Cells Int. 2012:823709.  https://doi.org/10.1155/2012/823709 (Epub 2012 Mar 28)CrossRefGoogle Scholar
  20. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858CrossRefGoogle Scholar
  21. Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saïb A, Voinnet O (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308(5721):557–560CrossRefGoogle Scholar
  22. Lee RC, Feinbaum RL, Ambros V. The C (1993) Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75(5):843–854CrossRefGoogle Scholar
  23. Li L, Wang X, Sasidharan R, Stolc V, Deng W, He H, Korbel J, Chen X, Tongprasit W, Ronald P, Chen R, Gerstein M, Deng XW (2007) Global identification and characterization of transcriptionally active regions in the rice genome. PLoS ONE 2(3):e294CrossRefGoogle Scholar
  24. Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z (2009) A role of miR-27 in the regulation of adipogenesis. FEBS J 276(8):2348–2358CrossRefGoogle Scholar
  25. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNa expression profiles classify human cancers. Nature 435(7043):834–838CrossRefGoogle Scholar
  26. Luo W, Nie Q, Zhang X (2013) MicroRNAs involved in skeletal muscle differentiation. J Genet Genomics 40(3):107–116.  https://doi.org/10.1016/j.jgg.2013.02.002 (Epub 2013 Feb 20)CrossRefPubMedGoogle Scholar
  27. Lv J, Zhang Z, Pan L, Zhang Y (2018) MicroRNA-34/449 family and viral infections. Virus Res 260:1–6.  https://doi.org/10.1016/j.virusres.2018.11.001 (Epub ahead of print)CrossRefGoogle Scholar
  28. McBride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, Martins I, Gilmore BL, Burstein H, Peluso RW, Polisky B, Carter BJ, Davidson BL (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A 105(15):5868–5873.  https://doi.org/10.1073/pnas.0801775105 (Epub 2008 Apr 8)CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16(6):720–728CrossRefGoogle Scholar
  30. Nelson PT, Hatzigeorgiou AG, Mourelatos Z (2004) miRNP:mRNA association in polyribosomes in a human neuronal cell line. RNA 10(3):387–394CrossRefGoogle Scholar
  31. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS, Fisher DE (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev 22(22):3172–3183.  https://doi.org/10.1101/gad.1706508CrossRefPubMedPubMedCentralGoogle Scholar
  32. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906CrossRefGoogle Scholar
  33. Schickel R, Boyerinas B, Park SM, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27(45):5959–5974.  https://doi.org/10.1038/onc.2008.274 ReviewCrossRefPubMedGoogle Scholar
  34. Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005) Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3’UTR evolution. Cell 123(6):1133–1146CrossRefGoogle Scholar
  35. Swanton C, Caldas C (2009) Molecular classification of solid tumours: towards pathway-driven therapeutics. Br J Cancer 100(10):1517–1522.  https://doi.org/10.1038/sj.bjc.6605031 (Epub 2009 Apr 14). ReviewCrossRefGoogle Scholar
  36. Tannenbaum E (2006) An RNA-centered view of eukaryotic cells. Biosystems. 84:217–224CrossRefGoogle Scholar
  37. The RNAcentral Constortium (2018) RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Res  https://doi.org/10.1093/nar/gky1034
  38. van Herwijnen MJC, Driedonks TAP, Snoek BL, Kroon AMT, Kleinjan M, Jorritsma R, Pieterse CMJ, Hoen ENMN, Wauben MHM (2018) Abundantly present miRNAs in milk-derived extracellular vesicles are conserved between mammals. Front Nutr 5:81.  https://doi.org/10.3389/fnut.2018.00081 (eCollection 2018)
  39. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261 (Epub 2006 Feb 3)CrossRefGoogle Scholar
  40. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LH, Agami R (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6):1169–1181CrossRefGoogle Scholar
  41. Wang W, Cai X, Lin P, Bai R (2018) Separation and determination of microRNAs by high-speed capillary sieving electrophoresis. J Sep Sci 41(20):3925–3931.  https://doi.org/10.1002/jssc.201800635 (Epub 2018 Sep 5)CrossRefPubMedGoogle Scholar
  42. Wienholds E, Koudijs MJ, van Eeden FJ, Cuppen E, Plasterk RH (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet 35:217–218CrossRefGoogle Scholar
  43. Wu N, Gu T, Lu L, Cao Z, Song Q, Wang Z, Zhang Y, Chang G, Xu Q, Chen G (2018) Roles of miRNA-1 and miRNA-133 in the proliferation and differentiation of myoblasts in duck skeletal muscle. J Cell Physiol.  https://doi.org/10.1002/jcp.26857CrossRefGoogle Scholar
  44. Xiong J, Lu X, Zhou Z, Chang Y, Yuan D, Tian M, Zhou Z, Wang L, Fu C, Orias E, Miao W (2012) Transcriptome analysis of the model protozoan, Tetrahymena thermophila, using Deep RNA sequencing. PLoS One. 7(2):e30630.  https://doi.org/10.1371/journal.pone.0030630 (Epub 2012 Feb 7)CrossRefGoogle Scholar
  45. Xu C, Wu S, Zhao W, Mipam T, Liu J, Liu W, Yi C, Shah MA, Yu S, Cai X (2018) Differentially expressed microRNAs between cattleyak and yak testis. Sci Rep 8(1):592.  https://doi.org/10.1038/s41598-017-18607-0CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations