Skip to main content

Big from Small: MicroRNA in Relation to Veterinary Sciences

  • Chapter
  • First Online:
Advances in Animal Biotechnology

Abstract

Eukaryotic transcriptome sequence data reveals that majority of the genome is transcribed into distinct noncoding RNA species, called microRNAs (miRNA). The miRNA is subset of tiny noncoding RNAs, about 21–23 nucleotides long, that play a role in controlling cognate mRNA degradation by cleavage or inhibiting the translational process. miRNA is popularly referred to as “micromanager of gene regulation.” In humans, miRNA disruption is correlated to diseases like cancers. In addition, miRNA has important implications in diseases and biological processes such as development, memory establishment, cell proliferation, apoptosis, and infections. Knowledge acquired from understanding miRNA pathway should be exploited to design artificial miRNAs with potential uses in therapeutics and livestock development.

Highlights

  • miRNAs are abundantly present in many organisms

  • The impact of miRNA-driven gene regulation is enormous; hence, it is a key field of study

  • In view of their involvements in diseases and biological processes, miRNAs offer opportunities to develop curative interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashraf SI, McLoon AL, Sclarsic SM, Kunes S (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124(1):191–205. Erratum in: Cell. 2006 Aug 25;126(4):812

    Article  CAS  Google Scholar 

  • Bellon M, Lepelletier Y, Hermine O, Nicot C (2009) Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia. Blood 113(20):4914–4917. https://doi.org/10.1182/blood-2008-11-189845 (Epub 2009 Feb 26)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broderick JA, Zamore PD (2011) MicroRNA therapeutics. Gene Ther. 18(12):1104–1110. https://doi.org/10.1038/gt.2011.50 (Epub 2011 Apr 28). Review

    Article  CAS  Google Scholar 

  • Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12):1957–1966 (Epub 2004 Nov 3)

    Article  CAS  Google Scholar 

  • Chhabra R, Adlakha YK, Hariharan M, Scaria V, Saini N (2009) Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells. PLoS ONE 4(6):e5848. https://doi.org/10.1371/journal.pone.0005848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 102(39):13944–13949. (Epub 2005 Sep 15). Erratum in: Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2464

    Article  CAS  Google Scholar 

  • Elmén J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Hedtjärn M, Hansen JB, Hansen HF, Straarup EM, McCullagh K, Kearney P, Kauppinen S (2008) Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 36(4):1153–1162 (Epub 2007 Dec 23)

    Article  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–144

    Article  CAS  Google Scholar 

  • Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1):23–34

    Article  CAS  Google Scholar 

  • Gusev Y, Brackett DJ (2007) MicroRNA expression profiling in cancer from a bioinformatics prospective. Expert Rev Mol Diagn 7(6):787–792. Review

    Article  CAS  Google Scholar 

  • Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ (2005) The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A 102(31):10898–10903 (Epub 2005 Jul 22)

    Article  CAS  Google Scholar 

  • Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H (2005) Stem cell division is regulated by the microRNA pathway. Nature 435(7044):974–978 (Epub 2005 Jun 8)

    Article  CAS  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

    Article  CAS  Google Scholar 

  • Hou X, Tang Z, Liu H, Wang N, Ju H, Li K (2012) Discovery of MicroRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs. PLoS One 7(12):e52123. https://doi.org/10.1371/journal.pone.0052123 (Epub 2012 Dec 21)

    Article  CAS  Google Scholar 

  • Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293(5538):2269–2271 (Epub 2001 Aug 2)

    Article  CAS  Google Scholar 

  • Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov. 11(2):125–140. https://doi.org/10.1038/nrd3625 Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozomara A, Birgaoanu M, Griffiths-Jones S (2018) miRBase: from microRNA sequences to function. Nucleic Acids Res. https://doi.org/10.1093/nar/gky1141 (Epub ahead of print)

    Article  Google Scholar 

  • Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with’antagomirs’. Nature 438(7068):685–689 (Epub 2005 Oct 30)

    Article  Google Scholar 

  • Kuo CH, Ying SY (2012) Advances in microRNA-mediated reprogramming technology. Stem Cells Int. 2012:823709. https://doi.org/10.1155/2012/823709 (Epub 2012 Mar 28)

    Article  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858

    Article  CAS  Google Scholar 

  • Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saïb A, Voinnet O (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308(5721):557–560

    Article  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V. The C (1993) Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75(5):843–854

    Article  CAS  Google Scholar 

  • Li L, Wang X, Sasidharan R, Stolc V, Deng W, He H, Korbel J, Chen X, Tongprasit W, Ronald P, Chen R, Gerstein M, Deng XW (2007) Global identification and characterization of transcriptionally active regions in the rice genome. PLoS ONE 2(3):e294

    Article  Google Scholar 

  • Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z (2009) A role of miR-27 in the regulation of adipogenesis. FEBS J 276(8):2348–2358

    Article  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNa expression profiles classify human cancers. Nature 435(7043):834–838

    Article  CAS  Google Scholar 

  • Luo W, Nie Q, Zhang X (2013) MicroRNAs involved in skeletal muscle differentiation. J Genet Genomics 40(3):107–116. https://doi.org/10.1016/j.jgg.2013.02.002 (Epub 2013 Feb 20)

    Article  CAS  PubMed  Google Scholar 

  • Lv J, Zhang Z, Pan L, Zhang Y (2018) MicroRNA-34/449 family and viral infections. Virus Res 260:1–6. https://doi.org/10.1016/j.virusres.2018.11.001 (Epub ahead of print)

    Article  CAS  Google Scholar 

  • McBride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, Martins I, Gilmore BL, Burstein H, Peluso RW, Polisky B, Carter BJ, Davidson BL (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A 105(15):5868–5873. https://doi.org/10.1073/pnas.0801775105 (Epub 2008 Apr 8)

    Article  PubMed  PubMed Central  Google Scholar 

  • Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16(6):720–728

    Article  CAS  Google Scholar 

  • Nelson PT, Hatzigeorgiou AG, Mourelatos Z (2004) miRNP:mRNA association in polyribosomes in a human neuronal cell line. RNA 10(3):387–394

    Article  CAS  Google Scholar 

  • Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS, Fisher DE (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev 22(22):3172–3183. https://doi.org/10.1101/gad.1706508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  CAS  Google Scholar 

  • Schickel R, Boyerinas B, Park SM, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27(45):5959–5974. https://doi.org/10.1038/onc.2008.274 Review

    Article  CAS  PubMed  Google Scholar 

  • Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005) Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3’UTR evolution. Cell 123(6):1133–1146

    Article  CAS  Google Scholar 

  • Swanton C, Caldas C (2009) Molecular classification of solid tumours: towards pathway-driven therapeutics. Br J Cancer 100(10):1517–1522. https://doi.org/10.1038/sj.bjc.6605031 (Epub 2009 Apr 14). Review

    Article  CAS  Google Scholar 

  • Tannenbaum E (2006) An RNA-centered view of eukaryotic cells. Biosystems. 84:217–224

    Article  CAS  Google Scholar 

  • The RNAcentral Constortium (2018) RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Res https://doi.org/10.1093/nar/gky1034

  • van Herwijnen MJC, Driedonks TAP, Snoek BL, Kroon AMT, Kleinjan M, Jorritsma R, Pieterse CMJ, Hoen ENMN, Wauben MHM (2018) Abundantly present miRNAs in milk-derived extracellular vesicles are conserved between mammals. Front Nutr 5:81. https://doi.org/10.3389/fnut.2018.00081 (eCollection 2018)

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261 (Epub 2006 Feb 3)

    Article  CAS  Google Scholar 

  • Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LH, Agami R (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6):1169–1181

    Article  CAS  Google Scholar 

  • Wang W, Cai X, Lin P, Bai R (2018) Separation and determination of microRNAs by high-speed capillary sieving electrophoresis. J Sep Sci 41(20):3925–3931. https://doi.org/10.1002/jssc.201800635 (Epub 2018 Sep 5)

    Article  CAS  PubMed  Google Scholar 

  • Wienholds E, Koudijs MJ, van Eeden FJ, Cuppen E, Plasterk RH (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet 35:217–218

    Article  CAS  Google Scholar 

  • Wu N, Gu T, Lu L, Cao Z, Song Q, Wang Z, Zhang Y, Chang G, Xu Q, Chen G (2018) Roles of miRNA-1 and miRNA-133 in the proliferation and differentiation of myoblasts in duck skeletal muscle. J Cell Physiol. https://doi.org/10.1002/jcp.26857

    Article  Google Scholar 

  • Xiong J, Lu X, Zhou Z, Chang Y, Yuan D, Tian M, Zhou Z, Wang L, Fu C, Orias E, Miao W (2012) Transcriptome analysis of the model protozoan, Tetrahymena thermophila, using Deep RNA sequencing. PLoS One. 7(2):e30630. https://doi.org/10.1371/journal.pone.0030630 (Epub 2012 Feb 7)

    Article  CAS  Google Scholar 

  • Xu C, Wu S, Zhao W, Mipam T, Liu J, Liu W, Yi C, Shah MA, Yu S, Cai X (2018) Differentially expressed microRNAs between cattleyak and yak testis. Sci Rep 8(1):592. https://doi.org/10.1038/s41598-017-18607-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birbal Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, B., Mal, G., Gautam, S.K., Mukesh, M. (2019). Big from Small: MicroRNA in Relation to Veterinary Sciences. In: Advances in Animal Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-21309-1_41

Download citation

Publish with us

Policies and ethics