RNA Interference: A Veterinary Health Perspective

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh


RNA interference (RNAi) is a naturally evolved and a conserved self-defensive mechanism triggered by double-stranded RNA (dsRNA) that limits transcript levels either by suppressing transcription or activating sequence-specific degradation of RNA. RNAi protects the host from endogenous and exogenous invading nucleic acids by regulating gene expression. RNAi is used as a promising tool in functional genomics and targeting microbial infections.


  • RNAi is a natural mechanism of self-defense in living organisms

  • RNAi is used as a tool to prevent zoonotic infections and non-infectious diseases.


RNAi RNA isoforms Virus Bacteria Vaccines Gene suppression CRISPR/Cas-9 Drosophila melanogaster 


  1. Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev. 67(4):657–685. ReviewCrossRefGoogle Scholar
  2. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13(10):807–818CrossRefGoogle Scholar
  3. Anandanarayanan A, Raina OK, Lalrinkima H, Rialch A, Sankar M, Varghese A (2017) RNA interference in Fasciola gigantica: Establishing and optimization of experimental RNAi in the newly excysted juveniles of the fluke. PLoS Negl Trop Dis. 11(12):e0006109. (eCollection 2017 Dec)CrossRefGoogle Scholar
  4. Balmayor ER, Evans CH (2019) RNA therapeutics for tissue engineering. Tissue Eng Part A 25(1–2):9–11. Scholar
  5. Cabezas-Cruz A, Espinosa P, Alberdi P, de la Fuente J (2019) Tick-Pathogen Interactions: The Metabolic Perspective. Trends Parasitol pii: S1471-4922(19)30018-2. (In press)CrossRefGoogle Scholar
  6. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301(5631):336–338CrossRefGoogle Scholar
  7. de la Fuente J, Kocan KM, Almazán C, Blouin EF (2007) RNA interference for the study and genetic manipulation of ticks. Trends Parasitol 23(9):427–433 (Epub 2007 Jul 25). ReviewGoogle Scholar
  8. Deng S, Li G, Yu K, Tian X, Wang F, Li W, Jiang W, Ji P, Han H, Fu J, Zhang X, Zhang J, Liu Y, Lian Z, Liu G (2017) RNAi combining Sleeping Beauty transposon system inhibits ex vivo expression of foot-and-mouth disease virus VP1 in transgenic sheep cells. Sci Rep 7(1):10065. Scholar
  9. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235 (Epub 2004 Nov 7)CrossRefGoogle Scholar
  10. Elbashir SM, Lendeckel W, Tuschl T (2001a) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2):188–200CrossRefGoogle Scholar
  11. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001b) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498CrossRefGoogle Scholar
  12. Faburay B, Richt JA (2016) Short interfering RNA inhibits rift valley fever virus replication and degradation of protein kinase R in human cells. Front Microbiol 7:1889 (eCollection 2016)Google Scholar
  13. Fay EJ, Langlois RA (2018) MicroRNA-attenuated virus vaccines. Noncoding RNA 4(4). pii: E25. Scholar
  14. Fujimoto Y, Kyogoku K, Takeda K, Ozaki K, Yamamoto S, Suyama H, Ono E (2019) Antiviral effects against influenza A virus infection by a short hairpin RNA targeting the non-coding terminal region of the viral nucleoprotein gene. J Vet Med Sci (Epub ahead of print)CrossRefGoogle Scholar
  15. Hu G, Kim J, Xu Q, Leng Y, Orkin SH, Elledge SJ (2009) A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev 23(7):837–848. Scholar
  16. Jongejan F, Nene V, de la Fuente J, Pain A, Willadsen P (2007) Advances in the genomics of ticks and tick-borne pathogens. Trends Parasitol 23(9):391–396CrossRefGoogle Scholar
  17. Kocan KM, Blouin E, de la Fuente J (2011) RNA interference in ticks. J Vis Exp (47). pii: 2474.
  18. Ramakrishnan VG, Aljamali MN, Sauer JR, Essenberg RC (2005) Application of RNA interference in tick salivary gland research. J Biomol Tech 16(4):297–305. ReviewGoogle Scholar
  19. Somarathne MBCL, Gunawardene YINS, Chandrasekharan NV, Dassanayake RS (2018) Development of siRNA mediated RNA interference and functional analysis of novel parasitic nematode-specific protein of Setaria digitata. Exp Parasitol 186:42–49. (Epub 2018 Feb 12)CrossRefPubMedGoogle Scholar
  20. Xie Z, Pang D, Yuan H, Jiao H, Lu C, Wang K, Yang Q, Li M, Chen X, Yu T, Chen X, Dai Z, Peng Y, Tang X, Li Z, Wang T, Guo H, Li L, Tu C, Lai L, Ouyang H (2018) Genetically modified pigs are protected from classical swine fever virus. PLoS Pathog 14(12):e1007193. (eCollection 2018 Dec)CrossRefGoogle Scholar
  21. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21–23 nucleotide intervals. Cell 101(1):25–33CrossRefGoogle Scholar
  22. Zheng X, Hu G (2014) Use of genome-wide RNAi screens to identify regulators of embryonic stem cell pluripotency and self-renewal. Methods Mol Biol 1150:163–173. Scholar
  23. Zhou D, He QS, Wang C, Zhang J, Wong-Staal F (2006) RNA interference and potential applications. Curr Top Med Chem 6(9):901–11. ReviewCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations