Microbial Resources from Wild and Captive Animals

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh


Wild herbivores- browsers, grazers, miners and suckers depend much on their symbiotic gut microbiota for deriving nutrients and minerals from forage and tree bark. The wild animals are inhabited by microbial symbionts that impact development, physiology, ecological interaction and adaptation of host, besides their overall well being. In view of these salient merits, the microbiome of wild animals could be a promising source of valuable genes, enzymes and miscellaneous bioactive molecules. The wild and captive animals are less explored, and should therefore be explored for microbial assets in them.

  • The gut microbes play crucial role in nutrition and health of wild animals

  • The gut microbes from wild animals have highly superior enzymes than those from domesticated livestock, hence may have biotechnological applications

  • The gut microorganisms with therapeutic properties could be valuable microbial feed supplements.


Ungulates Rumen microorganisms Fibrolytic enzymes Herbivores Plant metabolites 


  1. Arcila Hernández LM, Sanders JG, Miller GA, Ravenscraft A, Frederickson ME (2017) Ant-plant mutualism: a dietary by-product of a tropical ant’s macronutrient requirements. Ecology 98(12):3141–3151. Scholar
  2. Angert ER, Clements KD, Pace NR (1993) The largest bacterium. Nature 362(6417):239–241PubMedCrossRefGoogle Scholar
  3. Borbón-García A, Reyes A, Vives-Flórez M, Caballero S (2017) Captivity shapes the gut microbiota of andean bears: insights into health surveillance. Front Microbiol 8:1316. (eCollection 2017)
  4. Brooker JD, O’Donovan LA, Skene I, Clarke K, Blackall L, Muslera P (1994) Streptococcus caprinus sp. nov., a tannin-resistant ruminal bacterium from feral goats. Lett Appl Microbiol 18:313–318CrossRefGoogle Scholar
  5. de Oliveira Neto TS, Riet-Correa F, Lee ST, Cook D, Sousa Barbosa FM, da Silva Neto JF, Simões SVD, Lucena RB. Poisoning in goats by the monofluoracetate-containing plant Palicourea aeneofusca (Rubiaceae). Toxicon 135:12–16. (2017 Sep 1)PubMedCrossRefGoogle Scholar
  6. Dill-McFarland KA, Weimer PJ, Pauli JN, Peery MZ, Suen G (2016) Diet specialization selects for an unusual and simplified gut microbiota in two- and three-toed sloths. Environ Microbiol 18(5):1391–1402. Scholar
  7. Fink WL, Fink SV (1979) Central Amazonia and its fishes. Comp Biochem Physiol 62A:13–29CrossRefGoogle Scholar
  8. Hackmann TJ, Spain JN (2010) Invited review: ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. J Dairy Sci 93(4):1320–1334. Review (2010 Apr)PubMedCrossRefGoogle Scholar
  9. Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N (2017) Caterpillars lack a resident gut microbiome. Proc Natl Acad Sci USA 114(36):9641–9646. Scholar
  10. Hanafy RA, Elshahed MS, Youssef NH (2018) Feramyces austinii, gen. nov., sp. nov., an anaerobic gut fungus from rumen and fecal samples of wild Barbary sheep and fallow deer. Mycologia 110(3):513–525. (Epub 2018 Jul 3)PubMedPubMedCentralCrossRefGoogle Scholar
  11. Kamra DN, Singh B (2017) Anaerobic gut fungi. In: Satyanarayana T, Deshmukh S, Johri BN (eds) Developments in fungal biology and applied mycology. Springer Nature, Berlin, pp. 125–134. ISSBN 978-981-10-4768-8CrossRefGoogle Scholar
  12. Kohl KD, Weiss Robert B, Colin Dale M, Dearing Denise (2011) Diversity and novelty of the gut microbial community of an herbivorous rodent (Neotoma bryanti). Symbiosis. 54:47–54. Scholar
  13. Kohl KD, Stengel A, Dearing MD (2016) Inoculation of tannin-degrading bacteria into novel hosts increases performance on tannin-rich diets. Environ Microbiol 18(6):1720–1729. Scholar
  14. Kohl KD, Weiss RB, Cox J, Dale C, Dearing MD (2014) Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol Lett 17(10):1238–1246. Scholar
  15. Kowalczyk J, Ehlers S, Oberhausen A, Tischer M, Fürst P, Schafft H, Lahrssen-Wiederholt M (2013) Absorption, distribution, and milk secretion of the perfluoroalkyl acids PFBS, PFHxS, PFOS, and PFOA by dairy cows fed naturally contaminated feed. J Agric Food Chem 61(12):2903–2912. Scholar
  16. Krams IA, Kecko S, Jõers P, Trakimas G, Elferts D, Krams R, Luoto S, Rantala MJ, Inashkina I, Gudrā D, Fridmanis D, Contreras-Garduño J, Grantiņa-Ieviņa L, Krama T (2017) Microbiome symbionts and diet diversity incur costs on the immune system of insect larvae. J Exp Biol pii: jeb.169227. Scholar
  17. Krumholz LR, Bryant MP (1986) Eubacterium oxidoreducens sp. nov., requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch Microbiol 144:8–14CrossRefGoogle Scholar
  18. Leong LEX, Khan S, Davis CK, Denman SE, McSweeney CS (2017) Fluoroacetate in plants—a review of its distribution, toxicity to livestock and microbial detoxification. J Anim Sci Biotechnol 8:55. (eCollection 2017. Review)
  19. Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS (2010) Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J 4(10):1225–1235. Epub 2010 Apr 22PubMedPubMedCentralCrossRefGoogle Scholar
  20. Liu N, Zhang L, Zhou H, Zhang M, Yan X, Wang Q, Long Y, Xie L, Wang S, Huang Y, Zhou Z (2013) Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite(Odontotermes yunnanensis). PLoS One 8(7):e69184. Print 2013PubMedPubMedCentralCrossRefGoogle Scholar
  21. Marounek M, Brenová N, Suchorská O, Mrázek J (2009) Phytase activity in rabbit cecal bacteria. Folia Microbiol (Praha) 54(2):111–114. (Epub 2009 May 6)PubMedCrossRefGoogle Scholar
  22. Marynowska M, Goux X, Sillam-Dussès D, Rouland-Lefèvre C, Roisin Y, Delfosse P, Calusinska M (2017) Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome. BMC Genom 18(1):681. Scholar
  23. Matsui H, Ban-Tokuda T, Wakita M (2010a) Detection of fiber-digesting bacteria in the ceca of ostrich using specific primer sets. Curr Microbiol 60(2):112–116. (Epub 2009 Sep 29)PubMedCrossRefGoogle Scholar
  24. Matsui H1, Kato Y, Chikaraishi T, Moritani M, Ban-Tokuda T, Wakita M (2010b) Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library and detection of novel Fibrobacter species. Anaerobe 16(2):83–93. (Epub 2009 Jul 24)PubMedCrossRefGoogle Scholar
  25. McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM, Alexiev A, Amato KR, Metcalf JL, Kowalewski M, Avenant NL, Link A, Di Fiore A, Seguin-Orlando A, Feh C, Orlando L, Mendelson JR, Sanders J, Knight R (2017) The effects of captivity on the mammalian gut microbiome. Integr Comp Biol 57(4):690–704. Scholar
  26. Miller AW, Kohl KD, Dearing MD (2014) The gastrointestinal tract of the white-throated Woodrat (Neotoma albigula) harbors distinct consortia of oxalate-degrading bacteria. Appl Environ Microbiol 80(5):1595–1601. Scholar
  27. Nelson JA, Wubah DA, Whitmer ME, Johnson EA, Stewart DJ (1999) Wood-eating catfishes of the genus Panaque: gut microflora and cellulolytic enzyme activities. J Fish Biol 54:1069–1082Google Scholar
  28. Nomoto R, Takano S, Tanaka K, Tsujikawa Y, Kusunoki H, Osawa R (2017) Isolation and identification of Bifidobacterium species from feces of captive chimpanzees. Biosci Microbiota Food Health 36(3):91–99. Scholar
  29. Numata J, Kowalczyk J, Adolphs J, Ehlers S, Schafft H, Fuerst P, Müller-Graf C, Lahrssen-Wiederholt M, Greiner M (2014) Toxicokinetics of seven perfluoroalkyl sulfonic and carboxylic acids in pigs fed a contaminated diet. J Agric Food Chem 62(28):6861–6870. Scholar
  30. Oakeson KF, Miller A, Dale C, Dearing D (2016) Draft genome sequence of an oxalate-degrading strain of Clostridium sporogenes from the gastrointestinal tract of the white-throated woodrat (Neotoma albigula). Genome Announc 4(3). pii: e00392-16.
  31. Odenyo AA, Osuji PO (1998) Tannin-tolerant ruminal bacteria from East African ruminants. Can J Microbiol 44(9):905–909PubMedCrossRefGoogle Scholar
  32. Osawa R (1990) Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcus sp. isolated from feces of koalas. Appl Environ Microbiol 56(3):829–831Google Scholar
  33. Osawa R, Fujisawa T, Pukall R (2006) Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces. Int J Syst Evol Microbiol 56(Pt 7):1693–1696CrossRefGoogle Scholar
  34. Osawa R, Mitsuoka T (1990) Selective medium for enumeration of tannin-protein complex-degrading Streptococcus spp. in Feces of Koalas. Appl Environ Microbiol 56(11):3609–3611PubMedPubMedCentralGoogle Scholar
  35. Osawa R, Rainey F, Fugisawa T, Lang E, Busse HJ, Walsh TP, Stachebrandt (1995) Lonepinella koalarum gen. nov., a new tannin protein complex degrading bacterium. Syst Appl Microbiol 18:56–62Google Scholar
  36. Osawa R, Sly LI (1991) Phenotypic characterization of CO2-requiring strains of Streptococcus bovis from koalas. Appl Environ Microbiol 57(10):3037–3039PubMedPubMedCentralGoogle Scholar
  37. Osawa R, Sly LI (1992) Occurrence of tannin protein complex degrading Streptococcus spp. in feces of various animals. Syst Appl Microbiol 15:144–147CrossRefGoogle Scholar
  38. Pascoe EL, Hauffe HC, Marchesi JR, Perkins SE (2017) Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. Scholar
  39. Paul SS, Kamra DN, Sastry VRB (2010) Fermentative characteristics and fibrolytic activities of anaerobic gut fungi isolated from wild and domestic ruminants. Arch Anim Nutr 64(4):279–292PubMedCrossRefGoogle Scholar
  40. Paul SS, Kamra DN, Sastry VRB, Sahu NP, Agarwal N (2004) Effect of administration of an anaerobic gut fungus isolated from wild blue bull (Boselaphustrago camelus) to buffaloes (Bubalus bubalis) on in vivo ruminal fermentation and digestion of nutrients. Anim Feed Sci Technol 115:143–157CrossRefGoogle Scholar
  41. Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, Morrison M, Eijsink VG (2012) Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One. 7(6):e38571. (Epub 2012 Jun 6). Erratum in: PLoS One. 2014;9(7):e104612PubMedPubMedCentralCrossRefGoogle Scholar
  42. Roggenbuck M, Sauer C, Poulsen M, Bertelsen MF, Sørensen SJ (2014) The giraffe (Giraffa camelopardalis) rumen microbiome. FEMS Microbiol Ecol 90(1):237–246. Scholar
  43. Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, Hickman HD, McCulloch JA, Badger JH, Ajami NJ, Trinchieri G, Pardo-Manuel de Villena F, Yewdell JW, Rehermann B (2017) Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171(5):1015–1028. Scholar
  44. Sasaki E, Shimada T, Osawa R, Nishitani Y, Spring S, Lang E (2005) Isolation of tannin-degrading bacteria isolated from feces of the Japanese large wood mouse, Apodemus speciosus, feeding on tannin-rich acorns. Syst Appl Microbiol 28(4):358–365PubMedCrossRefGoogle Scholar
  45. Scully ED, Geib SM, Hoover K, Tien M, Tringe SG, Barry KW, Glavina del Rio T, Chovatia M, Herr JR, Carlson JE (2013) Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS One 8(9):e73827. (eCollection 2013)PubMedPubMedCentralCrossRefGoogle Scholar
  46. Singh B, Bhat TK, Sharma OP, Kurade NP (2008) Tannin-degrading bacteria from the gastrointestinal tract of Indian languor (Semnopithecus entellus) feeding on oak acorns. In: 49th Annual conference. International symposium on microbial biotechnology: diversiry, genomics and metagenomics. Organized by Department of Zoology, North Campus, Department of Miucrobiology, South Campus, University of Delhi, Delhi, India, p 52Google Scholar
  47. Tsuchida S, Murata K, Ohkuma M, Ushida K (2017) Isolation of Streptococcus gallolyticus with very high degradability of condensed tannins from feces of the wild Japanese rock ptarmigans on Mt. Tateyama. J Gen Appl Microbiol 63(3):195–198. (Epub 2017 Apr 7. No abstract available)
  48. Ushida K, Segawa T, Tsuchida S, Murata K (2016) Cecal bacterial communities in wild Japanese rock ptarmigans and captive Svalbard rock ptarmigans. J Vet Med Sci 78(2):251–257. Scholar
  49. Viney M (2018) The gut microbiota of wild rodents: challenges and opportunities. Lab Anim 23677218787538. (Epub ahead of print)PubMedCrossRefGoogle Scholar
  50. Wagstaff DJ (2008) International poisonous plant checklist. CRC Press, Boca RatonCrossRefGoogle Scholar
  51. Yang S, Gao X, Meng J, Zhang A, Zhou Y, Long M, Li B, Deng W, Jin L, Zhao S, Wu D, He Y, Li C, Liu S, Huang Y, Zhang H, Zou L (2018) Metagenomic analysis of bacteria, fungi, bacteriophages, and helminths in the gut of giant pandas. Front Microbiol 9:1717. (eCollection 2018)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations