Skip to main content

Microbial Resources from Wild and Captive Animals

  • Chapter
  • First Online:
Advances in Animal Biotechnology

Abstract

Wild herbivores- browsers, grazers, miners and suckers depend much on their symbiotic gut microbiota for deriving nutrients and minerals from forage and tree bark. The wild animals are inhabited by microbial symbionts that impact development, physiology, ecological interaction and adaptation of host, besides their overall well being. In view of these salient merits, the microbiome of wild animals could be a promising source of valuable genes, enzymes and miscellaneous bioactive molecules. The wild and captive animals are less explored, and should therefore be explored for microbial assets in them.

Highlights

  • The gut microbes play crucial role in nutrition and health of wild animals

  • The gut microbes from wild animals have highly superior enzymes than those from domesticated livestock, hence may have biotechnological applications

  • The gut microorganisms with therapeutic properties could be valuable microbial feed supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arcila Hernández LM, Sanders JG, Miller GA, Ravenscraft A, Frederickson ME (2017) Ant-plant mutualism: a dietary by-product of a tropical ant’s macronutrient requirements. Ecology 98(12):3141–3151. https://doi.org/10.1002/ecy.2036

    Article  PubMed  Google Scholar 

  • Angert ER, Clements KD, Pace NR (1993) The largest bacterium. Nature 362(6417):239–241

    Article  CAS  PubMed  Google Scholar 

  • Borbón-García A, Reyes A, Vives-Flórez M, Caballero S (2017) Captivity shapes the gut microbiota of andean bears: insights into health surveillance. Front Microbiol 8:1316. https://doi.org/10.3389/fmicb.2017.01316 (eCollection 2017)

  • Brooker JD, O’Donovan LA, Skene I, Clarke K, Blackall L, Muslera P (1994) Streptococcus caprinus sp. nov., a tannin-resistant ruminal bacterium from feral goats. Lett Appl Microbiol 18:313–318

    Article  CAS  Google Scholar 

  • de Oliveira Neto TS, Riet-Correa F, Lee ST, Cook D, Sousa Barbosa FM, da Silva Neto JF, Simões SVD, Lucena RB. Poisoning in goats by the monofluoracetate-containing plant Palicourea aeneofusca (Rubiaceae). Toxicon 135:12–16. https://doi.org/10.1016/j.toxicon.2017.05.025. (2017 Sep 1)

    Article  PubMed  Google Scholar 

  • Dill-McFarland KA, Weimer PJ, Pauli JN, Peery MZ, Suen G (2016) Diet specialization selects for an unusual and simplified gut microbiota in two- and three-toed sloths. Environ Microbiol 18(5):1391–1402. https://doi.org/10.1111/1462-2920.13022

    Article  PubMed  Google Scholar 

  • Fink WL, Fink SV (1979) Central Amazonia and its fishes. Comp Biochem Physiol 62A:13–29

    Article  Google Scholar 

  • Hackmann TJ, Spain JN (2010) Invited review: ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. J Dairy Sci 93(4):1320–1334. https://doi.org/10.3168/jds.2009-2071. Review (2010 Apr)

    Article  CAS  PubMed  Google Scholar 

  • Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N (2017) Caterpillars lack a resident gut microbiome. Proc Natl Acad Sci USA 114(36):9641–9646. https://doi.org/10.1073/pnas.1707186114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanafy RA, Elshahed MS, Youssef NH (2018) Feramyces austinii, gen. nov., sp. nov., an anaerobic gut fungus from rumen and fecal samples of wild Barbary sheep and fallow deer. Mycologia 110(3):513–525. https://doi.org/10.1080/00275514.2018.1466610 (Epub 2018 Jul 3)

    Article  CAS  PubMed  Google Scholar 

  • Kamra DN, Singh B (2017) Anaerobic gut fungi. In: Satyanarayana T, Deshmukh S, Johri BN (eds) Developments in fungal biology and applied mycology. Springer Nature, Berlin, pp. 125–134. ISSBN 978-981-10-4768-8

    Chapter  Google Scholar 

  • Kohl KD, Weiss Robert B, Colin Dale M, Dearing Denise (2011) Diversity and novelty of the gut microbial community of an herbivorous rodent (Neotoma bryanti). Symbiosis. 54:47–54. https://doi.org/10.1007/s13199-011-0125-3

    Article  Google Scholar 

  • Kohl KD, Stengel A, Dearing MD (2016) Inoculation of tannin-degrading bacteria into novel hosts increases performance on tannin-rich diets. Environ Microbiol 18(6):1720–1729. https://doi.org/10.1111/1462-2920.12841

    Article  CAS  PubMed  Google Scholar 

  • Kohl KD, Weiss RB, Cox J, Dale C, Dearing MD (2014) Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol Lett 17(10):1238–1246. https://doi.org/10.1111/ele.12329

    Article  PubMed  Google Scholar 

  • Kowalczyk J, Ehlers S, Oberhausen A, Tischer M, Fürst P, Schafft H, Lahrssen-Wiederholt M (2013) Absorption, distribution, and milk secretion of the perfluoroalkyl acids PFBS, PFHxS, PFOS, and PFOA by dairy cows fed naturally contaminated feed. J Agric Food Chem 61(12):2903–2912. https://doi.org/10.1021/jf304680j

    Article  CAS  PubMed  Google Scholar 

  • Krams IA, Kecko S, Jõers P, Trakimas G, Elferts D, Krams R, Luoto S, Rantala MJ, Inashkina I, Gudrā D, Fridmanis D, Contreras-Garduño J, Grantiņa-Ieviņa L, Krama T (2017) Microbiome symbionts and diet diversity incur costs on the immune system of insect larvae. J Exp Biol pii: jeb.169227. https://doi.org/10.1242/jeb.169227

    Article  PubMed  Google Scholar 

  • Krumholz LR, Bryant MP (1986) Eubacterium oxidoreducens sp. nov., requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch Microbiol 144:8–14

    Article  CAS  Google Scholar 

  • Leong LEX, Khan S, Davis CK, Denman SE, McSweeney CS (2017) Fluoroacetate in plants—a review of its distribution, toxicity to livestock and microbial detoxification. J Anim Sci Biotechnol 8:55. https://doi.org/10.1186/s40104-017-0180-6 (eCollection 2017. Review)

  • Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS (2010) Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J 4(10):1225–1235. https://doi.org/10.1038/ismej.2010.49 Epub 2010 Apr 22

    Article  PubMed  Google Scholar 

  • Liu N, Zhang L, Zhou H, Zhang M, Yan X, Wang Q, Long Y, Xie L, Wang S, Huang Y, Zhou Z (2013) Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite(Odontotermes yunnanensis). PLoS One 8(7):e69184. https://doi.org/10.1371/journal.pone.0069184. Print 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marounek M, Brenová N, Suchorská O, Mrázek J (2009) Phytase activity in rabbit cecal bacteria. Folia Microbiol (Praha) 54(2):111–114. https://doi.org/10.1007/s12223-009-0016-7 (Epub 2009 May 6)

    Article  CAS  PubMed  Google Scholar 

  • Marynowska M, Goux X, Sillam-Dussès D, Rouland-Lefèvre C, Roisin Y, Delfosse P, Calusinska M (2017) Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome. BMC Genom 18(1):681. https://doi.org/10.1186/s12864-017-4076-9

    Article  CAS  Google Scholar 

  • Matsui H, Ban-Tokuda T, Wakita M (2010a) Detection of fiber-digesting bacteria in the ceca of ostrich using specific primer sets. Curr Microbiol 60(2):112–116. https://doi.org/10.1007/s00284-009-9513-9 (Epub 2009 Sep 29)

    Article  PubMed  Google Scholar 

  • Matsui H1, Kato Y, Chikaraishi T, Moritani M, Ban-Tokuda T, Wakita M (2010b) Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library and detection of novel Fibrobacter species. Anaerobe 16(2):83–93. https://doi.org/10.1016/j.anaerobe.2009.07.005 (Epub 2009 Jul 24)

    Article  CAS  PubMed  Google Scholar 

  • McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM, Alexiev A, Amato KR, Metcalf JL, Kowalewski M, Avenant NL, Link A, Di Fiore A, Seguin-Orlando A, Feh C, Orlando L, Mendelson JR, Sanders J, Knight R (2017) The effects of captivity on the mammalian gut microbiome. Integr Comp Biol 57(4):690–704. https://doi.org/10.1093/icb/icx090

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller AW, Kohl KD, Dearing MD (2014) The gastrointestinal tract of the white-throated Woodrat (Neotoma albigula) harbors distinct consortia of oxalate-degrading bacteria. Appl Environ Microbiol 80(5):1595–1601. https://doi.org/10.1128/AEM.03742-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson JA, Wubah DA, Whitmer ME, Johnson EA, Stewart DJ (1999) Wood-eating catfishes of the genus Panaque: gut microflora and cellulolytic enzyme activities. J Fish Biol 54:1069–1082

    CAS  Google Scholar 

  • Nomoto R, Takano S, Tanaka K, Tsujikawa Y, Kusunoki H, Osawa R (2017) Isolation and identification of Bifidobacterium species from feces of captive chimpanzees. Biosci Microbiota Food Health 36(3):91–99. https://doi.org/10.12938/bmfh.16-027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numata J, Kowalczyk J, Adolphs J, Ehlers S, Schafft H, Fuerst P, Müller-Graf C, Lahrssen-Wiederholt M, Greiner M (2014) Toxicokinetics of seven perfluoroalkyl sulfonic and carboxylic acids in pigs fed a contaminated diet. J Agric Food Chem 62(28):6861–6870. https://doi.org/10.1021/jf405827u

    Article  CAS  PubMed  Google Scholar 

  • Oakeson KF, Miller A, Dale C, Dearing D (2016) Draft genome sequence of an oxalate-degrading strain of Clostridium sporogenes from the gastrointestinal tract of the white-throated woodrat (Neotoma albigula). Genome Announc 4(3). pii: e00392-16. https://doi.org/10.1128/genomea.00392-16

  • Odenyo AA, Osuji PO (1998) Tannin-tolerant ruminal bacteria from East African ruminants. Can J Microbiol 44(9):905–909

    Article  CAS  PubMed  Google Scholar 

  • Osawa R (1990) Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcus sp. isolated from feces of koalas. Appl Environ Microbiol 56(3):829–831

    Google Scholar 

  • Osawa R, Fujisawa T, Pukall R (2006) Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces. Int J Syst Evol Microbiol 56(Pt 7):1693–1696

    Article  CAS  Google Scholar 

  • Osawa R, Mitsuoka T (1990) Selective medium for enumeration of tannin-protein complex-degrading Streptococcus spp. in Feces of Koalas. Appl Environ Microbiol 56(11):3609–3611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa R, Rainey F, Fugisawa T, Lang E, Busse HJ, Walsh TP, Stachebrandt (1995) Lonepinella koalarum gen. nov., a new tannin protein complex degrading bacterium. Syst Appl Microbiol 18:56–62

    Google Scholar 

  • Osawa R, Sly LI (1991) Phenotypic characterization of CO2-requiring strains of Streptococcus bovis from koalas. Appl Environ Microbiol 57(10):3037–3039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa R, Sly LI (1992) Occurrence of tannin protein complex degrading Streptococcus spp. in feces of various animals. Syst Appl Microbiol 15:144–147

    Article  Google Scholar 

  • Pascoe EL, Hauffe HC, Marchesi JR, Perkins SE (2017) Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. https://doi.org/10.1038/ismej.2017.133

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul SS, Kamra DN, Sastry VRB (2010) Fermentative characteristics and fibrolytic activities of anaerobic gut fungi isolated from wild and domestic ruminants. Arch Anim Nutr 64(4):279–292

    Article  CAS  PubMed  Google Scholar 

  • Paul SS, Kamra DN, Sastry VRB, Sahu NP, Agarwal N (2004) Effect of administration of an anaerobic gut fungus isolated from wild blue bull (Boselaphustrago camelus) to buffaloes (Bubalus bubalis) on in vivo ruminal fermentation and digestion of nutrients. Anim Feed Sci Technol 115:143–157

    Article  Google Scholar 

  • Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, Morrison M, Eijsink VG (2012) Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One. 7(6):e38571. https://doi.org/10.1371/journal.pone.0038571 (Epub 2012 Jun 6). Erratum in: PLoS One. 2014;9(7):e104612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roggenbuck M, Sauer C, Poulsen M, Bertelsen MF, Sørensen SJ (2014) The giraffe (Giraffa camelopardalis) rumen microbiome. FEMS Microbiol Ecol 90(1):237–246. https://doi.org/10.1111/1574-6941.12402

    Article  CAS  PubMed  Google Scholar 

  • Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, Hickman HD, McCulloch JA, Badger JH, Ajami NJ, Trinchieri G, Pardo-Manuel de Villena F, Yewdell JW, Rehermann B (2017) Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171(5):1015–1028. https://doi.org/10.1016/j.cell.2017.09.016

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki E, Shimada T, Osawa R, Nishitani Y, Spring S, Lang E (2005) Isolation of tannin-degrading bacteria isolated from feces of the Japanese large wood mouse, Apodemus speciosus, feeding on tannin-rich acorns. Syst Appl Microbiol 28(4):358–365

    Article  PubMed  Google Scholar 

  • Scully ED, Geib SM, Hoover K, Tien M, Tringe SG, Barry KW, Glavina del Rio T, Chovatia M, Herr JR, Carlson JE (2013) Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS One 8(9):e73827. https://doi.org/10.1371/journal.pone.0073827 (eCollection 2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh B, Bhat TK, Sharma OP, Kurade NP (2008) Tannin-degrading bacteria from the gastrointestinal tract of Indian languor (Semnopithecus entellus) feeding on oak acorns. In: 49th Annual conference. International symposium on microbial biotechnology: diversiry, genomics and metagenomics. Organized by Department of Zoology, North Campus, Department of Miucrobiology, South Campus, University of Delhi, Delhi, India, p 52

    Google Scholar 

  • Tsuchida S, Murata K, Ohkuma M, Ushida K (2017) Isolation of Streptococcus gallolyticus with very high degradability of condensed tannins from feces of the wild Japanese rock ptarmigans on Mt. Tateyama. J Gen Appl Microbiol 63(3):195–198. https://doi.org/10.2323/jgam.2016.09.003 (Epub 2017 Apr 7. No abstract available)

  • Ushida K, Segawa T, Tsuchida S, Murata K (2016) Cecal bacterial communities in wild Japanese rock ptarmigans and captive Svalbard rock ptarmigans. J Vet Med Sci 78(2):251–257. https://doi.org/10.1292/jvms.15-0313

    Article  CAS  PubMed  Google Scholar 

  • Viney M (2018) The gut microbiota of wild rodents: challenges and opportunities. Lab Anim 23677218787538. https://doi.org/10.1177/0023677218787538 (Epub ahead of print)

    Article  PubMed  Google Scholar 

  • Wagstaff DJ (2008) International poisonous plant checklist. CRC Press, Boca Raton

    Book  Google Scholar 

  • Yang S, Gao X, Meng J, Zhang A, Zhou Y, Long M, Li B, Deng W, Jin L, Zhao S, Wu D, He Y, Li C, Liu S, Huang Y, Zhang H, Zou L (2018) Metagenomic analysis of bacteria, fungi, bacteriophages, and helminths in the gut of giant pandas. Front Microbiol 9:1717. https://doi.org/10.3389/fmicb.2018.01717 (eCollection 2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birbal Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, B., Mal, G., Gautam, S.K., Mukesh, M. (2019). Microbial Resources from Wild and Captive Animals. In: Advances in Animal Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-21309-1_4

Download citation

Publish with us

Policies and ethics