Designer Milk

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh


Milk is an important component of nutrition of human and animal neonates and has attracted interest of food technologists, clinicians, and biochemists. Composition of milk can be modified by dietary manipulations of milch animals and altering the genetic make-up of milk-producing species.

  • Milk can be modified by dietary and genetic manipulation

  • Milk having modified constituents has applications to improve health.


Milk Milk derived therapeutics Transgenic animals Milk composition 


  1. An L, Yang L, Huang Y, Cheng Y, Du F (2019) Generating goat mammary gland bioreactors for producing recombinant proteins by gene targeting. Methods Mol Biol 1874:391–401. Scholar
  2. Bainbridge ML, Saldinger LK, Barlow JW, Alvez JP, Roman J, Kraft J (2018) Alteration of rumen bacteria and protozoa through grazing regime as a tool to enhance the bioactive fatty acid content of bovine milk. Front Microbiol 9:904. (eCollection)CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bleck GT, White BR, Miller DJ, Wheeler MB (1998) Production of bovine alpha-lactalbumin in the milk of transgenic pigs. J Anim Sci 76(12):3072–3078CrossRefGoogle Scholar
  4. Brophy B, Smolenski G, Wheeler T, Wells D, L’Huillier P, Laible G (2003) Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat Biotechnol 21(2):157–162CrossRefGoogle Scholar
  5. Clark AJ, Ali S, Archibald AL, Bessos H, Brown P, Harris S, McClenaghan M, Prowse C, Simons JP, Whitelaw CBA, Wilmut I (1989) The molecular manipulation of milk composition. Genome 31(2):950–955 (Review)CrossRefGoogle Scholar
  6. Hayes M, Stanton C, Fitzgerald GF, Ross RP (2007) Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part II: bioactive peptide functions. Biotechnol J 2(4):435–449 (Review)CrossRefGoogle Scholar
  7. Henno M, Ariko T, Kaart T, Kuusik S, Ling K, Kass M, Jaakson H, Leming R, Givens DI, Sterna V, Ots M (2018) The fatty acid composition of Estonian and Latvian retail milk; implications for human nutrition compared with a designer milk. J Dairy Res 85(2):247–250. Scholar
  8. Jochum F, Alteheld B, Meinardus P, Dahlinger N, Nomayo A, Stehle P (2017) Mothers’ consumption of soy drink but not black tea increases the flavonoid content of term breast milk: a pilot randomized, controlled intervention study. Ann Nutr Metab 70(2):147–153. (Epub 2017 Apr 8)CrossRefPubMedGoogle Scholar
  9. Kling J (2009) First US approval for a transgenic animal drug. Nat Biotechnol 27(4):302–304. Scholar
  10. Krimpenfort P, Rademakers A, Eyestone W, van der Schans A, van den Broek S, Kooiman P, Kootwijk E, Platenburg G, Pieper F, Strijker R et al (1991) Generation of transgenic dairy cattle using ‘in vitro’ embryo production. Biotechnology (NY) 9(9):844–847Google Scholar
  11. LeMay-Nedjelski L, Copeland J, Wang PW, Butcher J, Unger S, Stintzi A, O’Connor DL (2018) Methods and strategies to examine the human breastmilk microbiome. Methods Mol Biol 1849:63–86. Scholar
  12. Lourenço M, Ramos-Morales E, Wallace RJ (2010) The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 4(7):1008–1023. Scholar
  13. Lu R, Zhang T, Wu D, He Z, Jiang L, Zhou M, Cheng Y (2018) Production of functional human CuZn-SOD and EC-SOD in bitransgenic cloned goat milk. Transgenic Res Scholar
  14. Maga EA, Cullor JS, Smith W, Anderson GB, Murray JD (2006) Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodborne Pathog Dis 3(4):384–392. Scholar
  15. Mal G, Singh B, Mane BG, Sharma V, Sharma R, Bhar R, Dhar JB (2018) Milk composition, antioxidant activities and protein profile of Gaddi goat milk. J Food Biochem (in press). Scholar
  16. Meignan T, Lechartier C, Chesneau G, Bareille N (2017) Effects of feeding extruded linseed on production performance and milk fatty acid profile in dairy cows: a meta-analysis. J Dairy Sci 100(6):4394–4408. Scholar
  17. Menchaca A, Anegon I, Whitelaw CB, Baldassarre H, Crispo M (2016) New insights and current tools for genetically engineered (GE) sheep and goats. Theriogenology 86(1):160–169. (Epub. Review)CrossRefGoogle Scholar
  18. Metzger SA, Hernandez LL, Suen G, Ruegg PL (2018) Understanding the milk microbiota. Vet Clin North Am Food Anim Pract 34(3):427–438. Scholar
  19. Monaco MH, Gronlund DE, Bleck GT, Hurley WL, Wheeler MB, Donovan SM (2005) Mammary specific transgenic over-expression of insulin-like growth factor-I (IGF-I) increases pigmilk IGF-I and IGF binding proteins, with no effect on milk composition or yield. Transgenic Res 14(5):761–773CrossRefGoogle Scholar
  20. Nature Biotechnology (2014) Rabbit milk Ruconest for hereditary angioedema. 32:849.
  21. Platenburg GJ, Kootwijk EP, Kooiman PM, Woloshuk SL, Nuijens JH, Krimpenfort PJ, Pieper FR, de Boer HA, Strijker R (1994) Expression of human lactoferrin in milk of transgenic mice. Transgenic Res 3(2):99–108CrossRefGoogle Scholar
  22. Simons JP, McClenaghan M, Clark AJ (1987) Alteration of the quality of milk by expression of sheep beta-lactoglobulin in transgenic mice. Nature 328(6130):530–532CrossRefGoogle Scholar
  23. Toral PG, Monahan FJ, Hervás G, Frutos P, Moloney AP (2018) Review: modulating ruminal lipid metabolism to improve the fatty acid composition of meat and milk. Challenges and opportunities. Animal. 1–10. Scholar
  24. Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, Wells KD, Talbot N, Hawk HW (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23(4):445–451 (Epub 2005 Apr 3. Erratum in: Nat Biotechnol. 23(7):897)CrossRefGoogle Scholar
  25. Wang Y, Ding F, Wang T, Liu W, Lindquist S, Hernell O, Wang J, Li J, Li L, Zhao Y, Dai Y, Li N (2017) Purification and characterization of recombinant human bile salt-stimulated lipase expressed in milk of transgenic cloned cows. PLoS One 12(5):e0176864CrossRefGoogle Scholar
  26. Wang S, Deng S, Cao Y, Zhang R, Wang Z, Jiang X, Wang J, Zhang X, Zhang J, Liu G, Lian Z (2018) Overexpression of toll-like receptor 4 contributes to phagocytosis of salmonella enterica serovar typhimurium via phosphoinositide 3-kinase signaling in sheep. Cell Physiol Biochem 49(2):662–677. (Epub 2018 Aug 30)CrossRefPubMedGoogle Scholar
  27. Wei J, Wagner S, Maclean P, Brophy B, Cole S, Smolenski G, Carlson DF, Fahrenkrug SC, Wells DN, Laible G (2018) Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen beta-lactoglobulin. Sci Rep 8(1):7661. Scholar
  28. Whitelaw CB, Joshi A, Kumar S, Lillico SG, Proudfoot C (2016) Genetically engineering milk. J Dairy Res 83(1):3–11. (Review)CrossRefPubMedGoogle Scholar
  29. Wolf E, Jehle PM, Weber MM, Sauerwein H, Daxenberger A, Breier BH, Besenfelder U, Frenyo L, Brem G (1997) Human insulin-like growth factor I (IGF-I) produced in the mammary glands of transgenic rabbits: yield, receptor binding, mitogenic activity, and effects on IGF-binding proteins. Endocrinology 138(1):307–313CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations