Advertisement

Animal Biotechnology in Human Health

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 541 Downloads

Abstract

The eventual purpose of animal biotechnology is using the animals and animal cells to improve human health through nutrition, novel recombinant therapeutics and producing organs for transplantation. Utilizing the curative potential of microbiota is another motive of the pursuit of biotechnology into animal gut ecosystem.

Highlights
  • Human–animal interaction is associated with health and well-being

  • Various livestock species are important agriculturally and relevant as model organisms

  • Transgenic animals produce recombinant drugs, vaccines, and monoclonal antibodies.

Keywords

Animal biotechnology Recombinant therapeutics Nutraceuticals Nutritional supplements Health security Model organisms Animal health 

References

  1. An L, Yang L, Huang Y, Cheng Y, Du F (2019) Generating goat mammary gland bioreactors for producing recombinant proteins by gene targeting. Methods Mol Biol 1874:391–401.  https://doi.org/10.1007/978-1-4939-8831-0_23PubMedCrossRefGoogle Scholar
  2. Chan JL, Singh AK, Corcoran PC, Thomas ML, Lewis BG, Ayares DL, Vaught T, Horvath KA, Mohiuddin MM (2017) Encouraging experience using multi-transgenic xenografts in a pig-to-baboon cardiac xenotransplantation model. Xenotransplantation 24(6).  https://doi.org/10.1111/xen.12330 (Epub 2017 Sep 22)CrossRefGoogle Scholar
  3. Chen W, Wang F, Tian C, Wang Y, Xu S, Wang R, Hou K, Zhao P, Yu L, Lu Z, Xia Q. (2018) Transgenic silkworm-based silk gland bioreactor for large scale production of bioactive human platelet-derived growth factor (pdgf-bb) in silk cocoons. Int J Mol Sci 19(9). pii: E2533.  https://doi.org/10.3390/ijms19092533PubMedCentralCrossRefGoogle Scholar
  4. Chung HJ, Park HJ, Baek SY, Park JK, Lee WY, Kim KW, Jo YM, Hochi S, Kim YM, Choi TJ, Cho ES, Cho KH (2018) Production of human tissue-type plasminogen activator (htPA) using in vitro cultured transgenic pig mammary gland cells. Anim Biotechnol 1–6.  https://doi.org/10.1080/10495398.2018.1521824
  5. Cooper DKC, Gaston R, Eckhoff D, Ladowski J, Yamamoto T, Wang L, Iwase H, Hara H, Tector M, Tector AJ (2018) Xenotransplantation-the current status and prospects. Br Med Bull 125(1):5–14.  https://doi.org/10.1093/bmb/ldx043PubMedCrossRefGoogle Scholar
  6. Denner J (2017) Paving the path toward porcine organs for transplantation. N Engl J Med 377(19):1891–1893.  https://doi.org/10.1056/NEJMcibr1710853 (No abstract available)PubMedCrossRefGoogle Scholar
  7. Feng X, Cao S, Wang H, Meng C, Li J, Jiang J, Qian Y, Su L, He Q, Zhang Q (2015) Production of transgenic dairy goat expressing human α-lactalbumin by somatic cell nuclear transfer. Transgenic Res 24(1):73–85.  https://doi.org/10.1007/s11248-014-9818-8 (Epub 2014 Aug 20)PubMedCrossRefGoogle Scholar
  8. Finger EB, Bischof JC (2018) Cryopreservation by vitrification: a promising approach for transplant organ banking. Curr Opin Organ Transplant 23(3):353–360.  https://doi.org/10.1097/MOT.0000000000000534CrossRefGoogle Scholar
  9. Friedman E, Krause-Parello CA (2018) Companion animals and human health: benefits, challenges, and the road ahead for human-animal interaction. Rev Sci Tech 37(1):71–82.  https://doi.org/10.20506/rst.37.1.2741PubMedCrossRefGoogle Scholar
  10. Garcia-Gutierrez E, Mayer MJ, Cotter PD, Narbad A (2019) Gut microbiota as a source of novel antimicrobials. Gut Microbes 10(1):1–21.  https://doi.org/10.1080/19490976.2018.1455790 (Epub 2018 May 22)PubMedCrossRefGoogle Scholar
  11. Gupta S (2017) Puppy power. Nature 543:S48–S49PubMedCrossRefGoogle Scholar
  12. He Z, Lu R, Zhang T, Jiang L, Zhou M, Wu D, Cheng Y (2018) A novel recombinant human plasminogen activator: efficient expression and hereditary stability in transgenic goats and in vitro thrombolytic bioactivity in the milk of transgenic goats. PLoS ONE 13(8):e0201788.  https://doi.org/10.1371/journal.pone.0201788 (eCollection 2018)PubMedPubMedCentralCrossRefGoogle Scholar
  13. Hryhorowicz M, Zeyland J, Słomski R, Lipiński D (2017) Genetically modified pigs as organ donors for xenotransplantation. Mol Biotechnol 59(9–10):435–444.  https://doi.org/10.1007/s12033-017-0024-9 (Review)PubMedPubMedCentralCrossRefGoogle Scholar
  14. Kim GA, Lee EM, Cho B, Alam Z, Kim SJ, Lee S, Oh HJ, Hwang JI, Ahn C, Lee BC (2019) Generation by somatic cell nuclear transfer of GGTA1 knockout pigs expressing soluble human TNFRI-Fc and human HO-1. Transgenic Res 28(1):91–102.  https://doi.org/10.1007/s11248-018-0103-0 (Epub 2018 Dec 14)PubMedCrossRefGoogle Scholar
  15. Kishore GM, Shewmaker C (1999) Biotechnology: enhancing human nutrition in developing and developed worlds. Proc Natl Acad Sci U S A 96(11):5968–5972PubMedPubMedCentralCrossRefGoogle Scholar
  16. Kumar M, Nagpal R, Verma V, Kumar A, Kaur N, Hemalatha R, Gautam SK, Singh B. (2013) Probiotic metabolites as epigenetic targets in the prevention of colon cancer. Nutr Rev 71(1):23–34.  https://doi.org/10.1111/j.1753-4887.2012.00542.x (Epub 2012 Nov 9. Review)PubMedCrossRefGoogle Scholar
  17. Kwon DJ, Kim DH, Hwang IS, Kim DE, Kim HJ, Kim JS, Lee K, Im GS, Lee JW, Hwang S (2017) Generation of α-1,3-galactosyltransferase knocked-out transgenic cloned pigs with knocked-in five human genes. Transgenic Res 26(1):153–163.  https://doi.org/10.1007/s11248-016-9979-8PubMedCrossRefGoogle Scholar
  18. Li Z, Quan G, Jiang X, Yang Y, Ding X, Zhang D, Wang X, Hardwidge PR, Ren W, Zhu G (2018) Effects of metabolites derived from gut microbiota and hosts on pathogens. Front Cell Infect Microbiol 8:314.  https://doi.org/10.3389/fcimb.2018.00314 (eCollection 2018. Review)PubMedPubMedCentralCrossRefGoogle Scholar
  19. Luo Y, Wang Y, Liu J, Lan H, Shao M, Yu Y, Quan F, Zhang Y (2015) Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery. Transgenic Res 24(5):875–883.  https://doi.org/10.1007/s11248-015-9898-0 (Epub 2015 Jul 22)PubMedCrossRefGoogle Scholar
  20. Mamo G (2016) Anaerobes as sources of bioactive compounds and health promoting tools. Adv Biochem Eng Biotechnol 156:433–464 (Review)Google Scholar
  21. Menchaca A, Anegon I, Whitelaw CB, Baldassarre H, Crispo M (2016) New insights and current tools for genetically engineered (GE) sheep and goats. Theriogenology 86(1):160–169.  https://doi.org/10.1016/j.theriogenology.2016.04.028PubMedCrossRefGoogle Scholar
  22. Monzani PS, Adona PR, Ohashi OM, Meirelles FV, Wheeler MB (2016) Transgenic bovine as bioreactors: challenges and perspectives. Bioengineered 7(3):123–131.  https://doi.org/10.1080/21655979.2016.1171429 (Epub 2016 May 11)PubMedPubMedCentralCrossRefGoogle Scholar
  23. Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300:611–615PubMedPubMedCentralCrossRefGoogle Scholar
  24. Pan D, Liu T, Lei T, Zhu H, Wang Y, Deng S (2019) Progress in multiple genetically modified minipigs for xenotransplantation in China. Xenotransplantation 26(1):e12492.  https://doi.org/10.1111/xen.12492 (Review)PubMedCrossRefGoogle Scholar
  25. Parc AL, Karav S, Rouquié C, Maga EA, Bunyatratchata A, Barile D (2017) Characterization of recombinant human lactoferrin N-glycans expressed in the milk of transgenic cows. PLoS ONE 12(2):e0171477.  https://doi.org/10.1371/journal.pone.0171477 (eCollection 2017)PubMedPubMedCentralCrossRefGoogle Scholar
  26. Petersen B (2018) Transgenic pigs to the rescue. Elife 7. pii: e37641.  https://doi.org/10.7554/elife.37641
  27. Qian Q, You Z, Ye L, Che J, Wang Y, Wang S, Zhong B (2018) High-efficiency production of human serum albumin in the posterior silk glands of transgenicsilkworms, Bombyx mori L. PLoS ONE 13(1):e0191507.  https://doi.org/10.1371/journal.pone.0191507 (eCollection 2018)PubMedPubMedCentralCrossRefGoogle Scholar
  28. Sheridan C (2016) FDA approves ‘farmaceutical’ drug from transgenic chickens. Nat Biotechnol 34(2):117–119.  https://doi.org/10.1038/nbt0216-117PubMedCrossRefGoogle Scholar
  29. Smood B, Hara H, Cleveland D, Cooper DKC (2019) In search of the ideal valve: optimizing genetic modifications to prevent bioprosthetic degeneration. Ann Thorac Surg. pii: S0003-4975(19)30251-6.  https://doi.org/10.1016/j.athoracsur.2019.01.054 (Epub ahead of print Review)
  30. Wang Y, Ding F, Wang T, Liu W, Lindquist S, Hernell O, Wang J, Li J, Li L, Zhao Y, Dai Y, Li N (2017) Purification and characterization of recombinant human bile salt-stimulated lipase expressed in milk of transgenic cloned cows. PLoS ONE 12(5):e0176864PubMedPubMedCentralCrossRefGoogle Scholar
  31. Woodfint RM, Hamlin E, Lee K (2018) Avian bioreactor systems: a review. Mol Biotechnol 60(12):975–983.  https://doi.org/10.1007/s12033-018-0128-xPubMedCrossRefGoogle Scholar
  32. Wu X, Ouyang H, Duan B, Pang D, Zhang L, Yuan T, Xue L, Ni D, Cheng L, Dong S, Wei Z, Li L, Yu M, Sun QY, Chen DY, Lai L, Dai Y, Li GP (2012) Production of cloned transgenic cow expressing omega-3 fatty acids. Transgenic Res 21(3):537–543.  https://doi.org/10.1007/s11248-011-9554-2 (Epub 2011 Sep 15)PubMedCrossRefGoogle Scholar
  33. Xie Z, Pang D, Yuan H, Jiao H, Lu C, Wang K, Yang Q, Li M, Chen X, Yu T, Chen X, Dai Z, Peng Y, Tang X, Li Z, Wang T, Guo H, Li L, Tu C, Lai L, Ouyang H (2018) Genetically modified pigs are protected from classical swine fever virus. PLoS Pathog 14(12):e1007193.  https://doi.org/10.1371/journal.ppat.1007193 (eCollection 2018 Dec)PubMedPubMedCentralCrossRefGoogle Scholar
  34. Zhang R, Tang C, Guo H, Tang B, Hou S, Zhao L, Wang J, Ding F, Zhao J, Wang H, Chen Z, Dai Y, Li N (2018a) A novel glycosylated anti-CD20 monoclonal antibody from transgenic cattle. Sci Rep 8(1):13208.  https://doi.org/10.1038/s41598-018-31417-2PubMedPubMedCentralCrossRefGoogle Scholar
  35. Zhang X, Li Z, Yang H, Liu D, Cai G, Li G, Mo J, Wang D, Zhong C, Wang H, Sun Y, Shi J, Zheng E, Meng F, Zhang M, He X, Zhou R, Zhang J, Huang M, Zhang R, Li N, Fan M, Yang J, Wu Z (2018b) Novel transgenic pigs with enhanced growth and reduced environmental impact. Elife 7. pii: e34286.  https://doi.org/10.7554/elife.34286

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations