Advertisement

Metabolomics in Livestock Sciences

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 550 Downloads

Abstract

Metabolomics is the systematic study of all the metabolites present in a cell, tissue, or organ. It is as an important functional genomics tool which provides a complete picture of a living organism. The amalgamation of metabolomics with other omic-based approaches is of growing interest, as it leads to a better comprehensive understanding of physiology of an organism. The metabolome is the end product of all the biological processes; thus, it can also explain the link between genotype and phenotype. This expanding technology can aid the disease research, pharmaceutical drug development and development of healthier and safer foods, and routinely used personal care products.
  • Highlights

  • Metabolomics is the study of entire range of metabolites including small molecules in cells, tissue, and biofluids

  • The technique is based on a number of advanced analytical instrumentation and bioinformatics tools

  • Metabolomics allows researchers to focus on measuring end products, and use the inferences to detect diseases and livestock monitoring.

Keywords

Metabolomics Metabolite profiling Biomarker discovery Metabolome database Disease diagnosis Livestock health 

References

  1. Aretz I, Meierhofer D (2016) Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology. Int J Mol Sci 17(5). pii: E632.  https://doi.org/10.3390/ijms17050632 (Review)CrossRefGoogle Scholar
  2. Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner LW (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9(9):418–425 (No abstract available)CrossRefGoogle Scholar
  3. De Moraes Pontes JG, De Santana FB, Portela RW, Azevedo V, Poppi RJ, Tasic L (2017) Biomarkers of the Caseous Lymphadenitis in sheep by NMR-based metabolomics. Metabolomics 7(2):1–7Google Scholar
  4. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78 (Review)CrossRefGoogle Scholar
  5. Faber JH, Malmodin D, Toft H, Maher AD, Crockford D, Holmes E, Nicholson JK, Dumas ME, Baunsgaard D (2007) Metabonomics in diabetes research. J Diabetes Sci Technol. 1(4):549–557CrossRefGoogle Scholar
  6. Goldansaz SA, Guo AC, Sajed T, Steele MA, Plastow GS, Wishart DS (2017) Livestock metabolomics and the livestock metabolome: A systematic review. PLoS ONE 12(5):e0177675.  https://doi.org/10.1371/journal.pone.0177675CrossRefPubMedPubMedCentralGoogle Scholar
  7. Guerreiro TM, Gonçalves RF, Melo CFOR, de Oliveira DN, Lima EO, Visintin JA, de Achilles MA, Catharino RR (2018) A metabolomic overview of follicular fluid in cows. Front Vet Sci 5:10.  https://doi.org/10.3389/fvets.2018.00010 (eCollection 2018)
  8. Horning EC, Horning MG (1971) Human metabolic profiles obtained by GC and GC/MS. J Chromatogr Sci 9(3):129–140CrossRefGoogle Scholar
  9. Love S, Salama A, Mehaba N, Caja G (2016) Milk metabolomics of dairy goats with mammary inflammation under heat stress conditions. J Anim Sci 94(5):616CrossRefGoogle Scholar
  10. Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, de Vos CH (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141(4):1205–1218CrossRefGoogle Scholar
  11. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16(9):373–378 (Review. Erratum in: Trends Biotechnol 1998 Oct;16(10):447)Google Scholar
  12. Saleem F, Bouatra S, Guo AC, Psychogios N, Mandal R, Dunn SM, Ametaj BN, Wishart DS (2013) The bovine ruminal fluid metabolome. Metabolomics 9(2):360–378CrossRefGoogle Scholar
  13. Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal BS, van Ommen B, Pujos-Guillot E, Verheij E, Wishart D, Wopereis S (2009) Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics 5:435–458CrossRefGoogle Scholar
  14. Schuhmacher R, Krska R, Weckwerth W, Goodacre R (2013) Metabolomics and metabolite profiling. Anal Bioanal Chem 405(15):5003–5004.  https://doi.org/10.1007/s00216-013-6939-5 (No abstract available)CrossRefPubMedGoogle Scholar
  15. Soga T (2007) Capillary electrophoresis-mass spectrometry for metabolomics. In: Weckwerth W (eds) Metabolomics. Methods in molecular biology, vol 358, pp 129–137. Humana PressGoogle Scholar
  16. Sotelo J, Slupsky CM (2013) Metabolomics using nuclear magnetic resonance (NMR). In: Metabolomics in food and nutrition, pp 29–43. University of California, Davis, USA. Woodhead Publishing LimitedCrossRefGoogle Scholar
  17. Sun HZ, Wang DM, Wang B, Wang JK, Liu HY, le Guan L, Liu JX (2015) Metabolomics of four biofluids from dairy cows: potential biomarkers for milk production and quality. J Proteome Res 14(2):1287–1298.  https://doi.org/10.1021/pr501305g (Epub 2015 Jan 28)CrossRefPubMedGoogle Scholar
  18. Sun H, Wang B, Wang J, Liu H, Liu J (2016) Biomarker and pathway analyses of urine metabolomics in dairy cows when corn stover replaces alfalfa hay. J Anim Sci Biotechnol. 7(1):49.  https://doi.org/10.1186/s40104-016-0107-7 (eCollection 2016)CrossRefPubMedPubMedCentralGoogle Scholar
  19. Tian H, Zheng N, Wang W, Cheng J, Li S, Zhang Y, Wang J (2016) Integrated metabolomics study of the milk of heat-stressed lactating dairy cows. Sci Rep 6(6):24208.  https://doi.org/10.1038/srep24208CrossRefPubMedPubMedCentralGoogle Scholar
  20. Xu C, Li Y, Xia C, Zhang HY, Sun LW, Xu CC (2015a) 1H NMR-based plasma metabolic profiling of dairy cows with Type I and Type II ketosis. Pharmaceutica Analytica Acta 6(2):328Google Scholar
  21. Xu C, Shu S, Xia C, Wang P, Sun Y, Xu C, Li C (2015b) Mass spectral analysis of urine proteomic profiles of dairy cows suffering from clinical ketosis. Vet Q. 35(3):133–141.  https://doi.org/10.1080/01652176.2015.1055352 (Epub 2015 Jun 18)CrossRefPubMedGoogle Scholar
  22. Yang Y, Zheng N, Zhao X, Zhang Y, Han R, Yang J, Zhao S, Li S, Guo T, Zang C, Wang J (2016) Metabolomic biomarkers identify differences in milk produced by Holstein cows and other minor dairy animals. J Proteomics. 16(136):174–182.  https://doi.org/10.1016/j.jprot.2015.12.031 (Epub 2016 Jan 11)CrossRefGoogle Scholar
  23. Yeung PK (2018) Metabolomics and biomarkers for drug discovery. Metabolites 8:11CrossRefGoogle Scholar
  24. Zhang A, Sun H, Wang P, Han Y, Wang X. Modern analytical techniques in metabolomics analysis. Analyst. 2012 Jan 21;137(2):293–300.  https://doi.org/10.1039/c1an15605e (Epub 2011 Nov 21. Review)CrossRefGoogle Scholar
  25. Zhang W, Hankemeier T, Ramautar R (2017) Next-generation capillary electrophoresis-mass spectrometry approaches in metabolomics. Curr Opin Biotechnol 43:1–7.  https://doi.org/10.1016/j.copbio.2016.07.002 (Epub 2016 Jul 22. Review)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations