Advertisement

Proteomics: Applications in Livestock

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 539 Downloads

Abstract

“Proteomics” is the large-scale study of proteins, particularly their composition, structure, function, and interactions with each other, and directing the activities of a cell. Techniques, such as 2D gel electrophoresis, MALDI-TOF/MS, X-ray crystallography, NMR, protein microarrays, two-hybrid screening, and western blotting are used in proteomic analysis. The goal of proteomics is to identify new and potentially unexpected changes in protein expression, interaction, or modifications. Generation of large proteomic datasets is expected to demonstrate the interdependence of cellular processes important for normal cell growth or a cell’s response to abnormal or disease conditions. Proteomic approach enables an investigator to step back and view the whole picture of cellular functions instead of one particular action of one protein. The scope of proteomics in livestock is broad and includes the characterization and monitoring of changes that take place during the growth, development, and other physiological processes.
  • Highlights

  • Proteomics depicts the whole picture of cellular functions

  • Proteomics applications in livestock system are diverse and highly useful.

Keywords

Proteomics Biomarkers Farm animals Aquaculture Animal health Disease detection Livestock product quality 

References

  1. Almeida AM, Bassols A, Bendixen E, Bhide M, Ceciliani F, Cristobal S, Eckersall PD, Hollung K, Lisacek F, Mazzucchelli G, McLaughlin M, Miller I, Nally JE, Plowman J, Renaut J, Rodrigues P, Roncada P, Staric J, Turk R (2015) Animal board invited review: advances in proteomics for animal and food sciences. Animal 9(1):1–17.  https://doi.org/10.1017/s1751731114002602 (Epub 2014 Oct 31. Review)PubMedPubMedCentralCrossRefGoogle Scholar
  2. Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17(3):121–127 (Review)PubMedCrossRefGoogle Scholar
  3. Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10(6):2763–2788.  https://doi.org/10.3390/ijms10062763 (Review)PubMedPubMedCentralCrossRefGoogle Scholar
  4. Carvalho ME, Gasparin G, Poleti MD, Rosa AF, Balieiro JC, Labate CA, Nassu RT, Tullio RR, Regitano LC, Mourão GB, Coutinho LL (2014) Heat shock and structural proteins associated with meat tenderness in Nellore beef cattle, a Bos indicus breed. Meat Sci 96(3):1318–1324.  https://doi.org/10.1016/j.meatsci.2013.11.014 (Epub 2013 Nov 22)PubMedCrossRefGoogle Scholar
  5. Causier B (2004) Studying the interactome with the yeast two-hybrid system and mass spectrometry. Mass Spectrom Rev 23(5):350–367 (Review)PubMedCrossRefGoogle Scholar
  6. Chandrasekhar K, Dileep A, Ester Lebonah D, Kumari JP (2014) A short review on proteomics and its applications. Int Lett Nat Sci 17:77–84Google Scholar
  7. Cottrell JS (2011) Protein identification using MS/MS data. J Proteomics. 74(10):1842–1851.  https://doi.org/10.1016/j.jprot.2011.05.014 (Epub 2011 May 15)PubMedCrossRefGoogle Scholar
  8. Graves PR, Haystead TAJ (2002a) Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev 66(1):39–63PubMedPubMedCentralCrossRefGoogle Scholar
  9. Graves PR, Haystead TA (2002) Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev 66(1):39–63 (table of contents. Review)PubMedPubMedCentralCrossRefGoogle Scholar
  10. Higashiura A, Ohta K, Masaki M, Sato M, Inaka K, Tanaka H, Nakagawa A (2013) High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method. J Synchrotron Radiat 20(Pt 6):989–993.  https://doi.org/10.1107/S090904951302373X (Epub 2013 Oct 5)PubMedPubMedCentralCrossRefGoogle Scholar
  11. Hollung K, Veiseth E, Jia X, Faergestad EM, Hildrum KL (2007) Application of proteomics to understand the molecular mechanisms behind meat quality. Meat Sci 77:97–104PubMedCrossRefGoogle Scholar
  12. Jayasri K, Padmaja K, Prasad PE (2014) Proteomics in animal health and production. IOSR J Agri Vet Sci 7(4):50–56CrossRefGoogle Scholar
  13. Kumar A, Rout PK, Mohanty BP (2013) Identification of Milk Protein Polymorphism in Indian Goats by 2D Gel Electrophoresis. J Proteomics Bioinform 6(1):001–004Google Scholar
  14. Kurpińska AJ, Skrzypczak WF (2014) Proteomic studies in pregnant and lactating cows. A review. J Anim Feed Sci 23(3):203–211CrossRefGoogle Scholar
  15. Manjasetty BA, Bussow K, Panjikar S, Turnbull AP (2012) Current methods in structural proteomics and its applications in biological sciences. 3 Biotech 2:89–113PubMedCentralCrossRefGoogle Scholar
  16. Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21(3):255–261 (Review)PubMedCrossRefGoogle Scholar
  17. Okada T, Le Trong I, Fox BA, Behnke CA, Stenkamp RE, Palczewski K (2000) X-Ray diffraction analysis of three-dimensional crystals of bovine rhodopsin obtained from mixed micelles. J Struct Biol 130(1):73–80PubMedCrossRefGoogle Scholar
  18. Oskoueian E, Eckersall PD, Bencurova E, Dandekar T (2016) Application of proteomic biomarkers in livestock disease management. In: Salekdeh GH (ed) Agricultural proteomics, vol 2. Environmental stresses. Springer International Publishing, Switzerland, pp 299–310CrossRefGoogle Scholar
  19. Rabilloud T, Lelong C (2011) Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteomics. 74(10):1829–1841.  https://doi.org/10.1016/j.jprot.2011.05.040 (Epub 2011 Jun 12)PubMedCrossRefGoogle Scholar
  20. Rajagopala SV, Sikorski P, Caufield JH, Tovchigrechko A, Uetz P (2012) Studying protein complexes by the yeast two-hybrid system. Methods 58(4):392–399PubMedPubMedCentralCrossRefGoogle Scholar
  21. Rehm T, Huber R, Holak TA (2002) Application of NMR in structural proteomics: screening for proteins amenable to structural analysis. Structure 10(12):1613–1618PubMedCrossRefGoogle Scholar
  22. Reinhardt TA, Lippolis JD, Nonnecke BJ, Sacco RE (2012) Bovine milk exosome proteome. J Proteomics. 75(5):1486–1492.  https://doi.org/10.1016/j.jprot.2011.11.017 (Epub 2011 Nov 23)PubMedCrossRefGoogle Scholar
  23. Rodrigues RT, Chizzotti ML, Vital CE, Baracat-Pereira MC, Barros E, Busato KC, Gomes RA, Ladeira MM, Martins TD (2017) Differences in beef quality between angus (Bos taurus taurus) and Nellore (Bos taurus indicus) cattle through a proteomic and phosphoproteomic approach. PLoS One 12(1):e0170294.  https://doi.org/10.1371/journal.pone.0170294 (eCollection 2017)PubMedPubMedCentralCrossRefGoogle Scholar
  24. Roncada P, Piras C, Soggiu A, Turk R, Urbani A, Bonizzi L (2012) Farm animal milk proteomics. J Proteomics 75(14):4259–4274.  https://doi.org/10.1016/j.jprot.2012.05.028 (Epub 2012 May 26. Review)PubMedCrossRefGoogle Scholar
  25. Sarsaifi K, Haron AW, Vejayan J, Yusoff R, Hani H, Omar MA, Hong LW, Yimer N, Ju TY, Othman AM (2015) Two-dimensional polyacrylamide gel electrophoresis of Bali bull (Bos javanicus) seminal plasma proteins and their relationship with semen quality. Theriogenology 84(6):956–968.  https://doi.org/10.1016/j.theriogenology.2015.05.035 (Epub 2015 Jun 6)PubMedCrossRefGoogle Scholar
  26. Shin J, Lee W, Lee W (2008) Structural proteomics by NMR spectroscopy. Expert Rev Proteomics. 5(4):589–601.  https://doi.org/10.1586/14789450.5.4.589 (Review)PubMedCrossRefGoogle Scholar
  27. Soares R, Franco C, Pires E, Ventosa M, Palhinhas R, Koci K, Martinho de Almeida A, Varela Coelho A (2012) Mass spectrometry and animal science: protein identification strategies and particularities of farm animal species. J Proteomics 75(14):4190–4206.  https://doi.org/10.1016/j.jprot.2012.04.009PubMedCrossRefGoogle Scholar
  28. Soggiu A, Piras C, Hussein HA, De Canio M, Gaviraghi A, Galli A, Urbani A, Bonizzi L, Roncada P (2013) Unravelling the bull fertility proteome. Mol BioSyst 9(6):1188–1195.  https://doi.org/10.1039/c3mb25494a (Epub 2013 Feb 7)PubMedCrossRefGoogle Scholar
  29. Suter B, Kittanakom S, Stagljar I (2008) Two-hybrid technologies in proteomics research. Curr Opin Biotechnol 19(4):316–323.  https://doi.org/10.1016/j.copbio.2008.06.005 (Epub 2008 Jul 23. Review)PubMedCrossRefGoogle Scholar
  30. Yee A, Chang X, Pineda-Lucena A, Wu B, Semesi A, Le B, Ramelot T, Lee GM, Bhattacharyya S, Gutierrez P, Denisov A, Lee CH, Cort JR, Kozlov G, Liao J, Finak G, Chen L, Wishart D, Lee W, McIntosh LP, Gehring K, Kennedy MA, Edwards AM, Arrowsmith CH (2002) An NMR approach to structural proteomics. Proc Natl Acad Sci U S A 99(4):1825–1830PubMedPubMedCentralCrossRefGoogle Scholar
  31. Zhu H, Qian J (2012) Applications of functional protein microarrays in basic and clinical research. Adv Genet 79:123–155.  https://doi.org/10.1016/B978-0-12-394395-8.00004-9 (Review)PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations