Advertisement

Transcriptomics: Genome-Wide Expression Analysis in Livestock Research

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 541 Downloads

Abstract

Transcriptomics or genome-wide expression analysis has always played a central role in the field of functional genomics. Simultaneous quantification of thousands of genes at genome-wide scale has revolutionized the research in livestock. It has helped in unraveling the complexity of gene regulation and providing insights into gene networks and molecular pathways relevant to functional traits.
  • Highlights

  • Transcriptomics describes and estimates the genes expressed in cells or organisms.

  • Several candidate genes are identified by transcriptomic analysis and suggested to understand diseases, stress, and genetic merits of livestock.

Keywords

Transcriptomics RNA-Seq Expression microarrays Microarray platforms Adaptive traits Disease diagnosis Lactation physiology 

References

  1. Bernard C, Cassar-Malek I, Le Cunff M, Dubroeucq H, Renand G, Hocquette JF (2007) New indicators of beef sensory quality revealed by expression of specific genes. J Agric Food Chem 55(13):5229–5237 Epub 2007 Jun 5CrossRefGoogle Scholar
  2. Bionaz M, Periasamy K, Rodriguez-Zas SL, Everts RE, Lewin HA, Hurley WL, Loor JJ (2012) Old and new stories: revelations from functional analysis of the bovine mammary transcriptome during the lactation cycle. PLoS One 7(3):e33268.  https://doi.org/10.1371/journal.pone.0033268 (Epub 2012 Mar 12)CrossRefGoogle Scholar
  3. Byrne KA, Wang YH, Lehnert SA, Harper GS, McWilliam SM, Bruce HL, Reverter A (2005) Gene expression profiling of muscle tissue in Brahman steers during nutritional restriction. J Anim Sci 83(1):1–12CrossRefGoogle Scholar
  4. Caetano AR, Johnson RK, Ford JJ, Pomp D (2004) Microarray profiling for differential gene expression in ovaries and ovarian follicles of pigs selected for increased ovulation rate. Genetics 168(3):1529–1537CrossRefGoogle Scholar
  5. Cui X, Hou Y, Yang S, Xie Y, Zhang S, Zhang Y, Zhang Q, Lu X, Liu GE, Sun D (2014) Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing. BMC Genom 24(15):226.  https://doi.org/10.1186/1471-2164-15-226CrossRefGoogle Scholar
  6. Denman SE, Morgavi DP, McSweeney CS (2018) Review: the application of omics to rumen microbiota function. Animal 12(s2):s233–s245.  https://doi.org/10.1017/s175173111800229x (Epub 2018 Sep 28 Review)CrossRefGoogle Scholar
  7. Elekwachi CO, Wang Z, Wu X, Rabee A, Forster RJ (2017) Total rRNA-seq analysis gives insight into bacterial, fungal, protozoal and archaeal communities in the rumen using an optimized RNA isolation method. Front Microbiol 8:1814.  https://doi.org/10.3389/fmicb.2017.01814 (eCollection 2017)
  8. Gao Y, Lin X, Shi K, Yan Z, Wang Z (2013) Bovine mammary gene expression profiling during the onset of lactation. PLoS One 8(8):e70393.  https://doi.org/10.1371/journal.pone.0070393 (eCollection 2013)CrossRefGoogle Scholar
  9. Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E (2014) Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci U S A. 111(11):4139–4144.  https://doi.org/10.1073/pnas.1321569111 (Epub 2014 Mar 3)CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gòdia M, Mayer FQ, Nafissi J, Castelló A, Rodríguez-Gil JE, Sánchez A, Clop A (2018) A technical assessment of the porcine ejaculated spermatozoa for a sperm-specific RNA-seqanalysis. Syst Biol Reprod Med. 64(4):291–303.  https://doi.org/10.1080/19396368.2018.1464610 (Epub 2018 Apr 26)CrossRefPubMedGoogle Scholar
  11. Grummer RR, Mashek DG, Hayirli A (2004) Dry matter intake and energy balance in the transition period. Vet Clin North Am Food Anim Pract 20(3):447–470 (Review)PubMedGoogle Scholar
  12. Gruninger RJ, Reid I, Forster RJ, Tsang A, McAllister TA (2017) Identification of genes involved in the degradation of lignocellulose using comparative transcriptomics. Methods Mol Biol 1588:279–298.  https://doi.org/10.1007/978-1-4939-6899-2_21CrossRefPubMedGoogle Scholar
  13. Hayashi KG, Ushizawa K, Hosoe M, Takahashi T (2010) Differential genome-wide gene expression profiling of bovine largest and second-largest follicles: identification of genes associated with growth of dominant follicles. Reprod Biol Endocrinol 5(8):11.  https://doi.org/10.1186/1477-7827-8-11CrossRefGoogle Scholar
  14. Huang W, Guo Y, Du W, Zhang X, Li A, Miao X (2017) Global transcriptome analysis identifies differentially expressed genes related to lipid metabolism in Wagyu and Holstein cattle. Sci Rep. 7(1):5278.  https://doi.org/10.1038/s41598-017-05702-5CrossRefPubMedPubMedCentralGoogle Scholar
  15. Huang W, Khatib H (2010) Comparison of transcriptomic landscapes of bovine embryos using RNA-Seq. BMC Genom 17(11):711.  https://doi.org/10.1186/1471-2164-11-711CrossRefGoogle Scholar
  16. Hayashi KG, Ushizawa K, Hosoe M, Takahashi T (2011) Differential gene expression of serine protease inhibitors in bovine ovarian follicle: possible involvement in follicular growth and atresia. Reprod Biol Endocrinol. 27(9):72.  https://doi.org/10.1186/1477-7827-9-72CrossRefGoogle Scholar
  17. Iannaccone M, Elgendy R, Giantin M, Martino C, Giansante D, Ianni A, Dacasto M, Martino G (2018) RNA sequencing-based whole-transcriptome analysis of friesian cattle fed with grape pomace-supplemented diet. Animals (Basel) 8(11). pii: E188.  https://doi.org/10.3390/ani8110188CrossRefGoogle Scholar
  18. Kapila N, Sharma A, Kishore A, Sodhi M, Tripathi PK, Mohanty AK, Mukesh M (2016) Impact of heat stress on cellular and transcriptional adaptation of mammary epithelial cells in riverine buffalo (Bubalus Bubalis). PLoS ONE 11(9):e0157237.  https://doi.org/10.1371/journal.pone.0157237 (eCollection 2016. Erratum. In: PLoS One. 2018 Jan 11;13(1):e0191380)CrossRefPubMedPubMedCentralGoogle Scholar
  19. Keel BN, Zarek CM, Keele JW, Kuehn LA, Snelling WM, Oliver WT, Freetly HC, Lindholm-Perry AK (2018) RNA-Seq meta-analysis identifies genes in skeletal muscle associated with gain and intake across a multi-season study of crossbred beef steers. BMC Genom 19(1):430.  https://doi.org/10.1186/s12864-018-4769-8CrossRefGoogle Scholar
  20. Kosciuczuk EM, Lisowski P, Jarczak J, Majewska A, Rzewuska M, Zwierzchowski L, Bagnicka E (2017) Transcriptome profiling of Staphylococci-infected cow mammary gland parenchyma. BMC Vet Res. 13(1):161.  https://doi.org/10.1186/s12917-017-1088-2CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lavagi I, Krebs S, Simmet K, Beck A, Zakhartchenko V, Wolf E, Blum H (2018) Single-cell RNA sequencing reveals developmental heterogeneity of blastomeres during major genome activation in bovine embryos. Sci Rep. 8(1):4071.  https://doi.org/10.1038/s41598-018-22248-2CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li D, Xie Z, Zand M, Fogg T, Dye T (2017a) Bon-EV: an improved multiple testing procedure for controlling false discovery rates. BMC Bioinformatics 18(1):1.  https://doi.org/10.1186/s12859-016-1414-xCrossRefPubMedPubMedCentralGoogle Scholar
  23. Li S, Wang Q, Lin X, Jin X, Liu L, Wang C, Chen Q, Liu J, Liu H (2017b) The use of “Omics” in lactation research in dairy cows. Int J Mol Sci 18(5). pii: E983. https://doi.org/10.3390/ijms18050983 (Review)CrossRefGoogle Scholar
  24. Lin J, Wu YJ, Liang X, Ji M, Ying HM, Wang XY, Sun X, Shao CH, Zhan LX, Zhang Y (2019) Network-based integration of mRNA and miRNA profiles reveals new target genes involved in pancreatic cancer. Mol Carcinog 58(2):206–218.  https://doi.org/10.1002/mc.22920 (Epub 2018 Oct 29)CrossRefPubMedGoogle Scholar
  25. Liu Y, Yang X, Jing X, He X, Wang L, Liu Y, Liu D (2017) Transcriptomics analysis on excellent meat quality traits of skeletal muscles of the chinese indigenous min pig compared with the large white breed. Int J Mol Sci 19(1). pii: E21.  https://doi.org/10.3390/ijms19010021CrossRefGoogle Scholar
  26. Loor JJ, Everts RE, Bionaz M, Dann HM, Morin DE, Oliveira R, Rodriguez-Zas SL, Drackley JK, Lewin HA (2007) Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows. Physiol Genomics 32(1):105–116 (Epub 2007 Oct 9)CrossRefGoogle Scholar
  27. Maeda S, Tomiyasu H, Tsuboi M, Inoue A, Ishihara G, Uchikai T, Chambers JK, Uchida K, Yonezawa T, Matsuki N (2018) Comprehensive gene expression analysis of canine invasive urothelial bladder carcinoma by RNA-Seq. BMC Cancer 18(1):472.  https://doi.org/10.1186/s12885-018-4409-3CrossRefPubMedPubMedCentralGoogle Scholar
  28. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18(9):1509–1517.  https://doi.org/10.1101/gr.079558.108 (Epub 2008 Jun 11)CrossRefPubMedPubMedCentralGoogle Scholar
  29. McLoughlin KE, Nalpas NC, Rue-Albrecht K, Browne JA, Magee DA, Killick KE, Park SD, Hokamp K, Meade KG, O’Farrelly C, Gormley E, Gordon SV, MacHugh DE (2014) RNA-seq transcriptional profiling of peripheral blood leukocytes from cattle infected with mycobacterium bovis. Front Immunol 5:396.  https://doi.org/10.3389/fimmu.2014.00396 (eCollection 2014)
  30. Miao X, Luo Q, Qin X, Guo Y, Zhao H (2015) Genome-wide mRNA-seq profiling reveals predominant down-regulation of lipid metabolic processes in adipose tissues of Small Tail Han than Dorset sheep. Biochem Biophys Res Commun 467(2):413–420.  https://doi.org/10.1016/j.bbrc.2015.09.129 (Epub 2015 Sep 28)CrossRefPubMedGoogle Scholar
  31. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628.  https://doi.org/10.1038/nmeth.1226 (Epub 2008 May 30)CrossRefPubMedPubMedCentralGoogle Scholar
  32. Moyes KM, Drackley JK, Morin DE, Rodriguez-Zas SL, Everts RE, Lewin HA, Loor JJ (2010) Mammary gene expression profiles during an intramammary challenge reveal potential mechanisms linking negative energy balance with impaired immune response. Physiol Genomics 41(2):161–170.  https://doi.org/10.1152/physiolgenomics.00197.2009 (Epub 2010 Jan 26)CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nookaew I, Papini M, Pornputtapong N, Scalcinati G, Fagerberg L, Uhlén M, Nielsen J (2012) A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res 40(20):10084–10097.  https://doi.org/10.1093/nar/gks804 (Epub 2012 Sep 10)CrossRefPubMedPubMedCentralGoogle Scholar
  34. Park W, Srikanth K, Lim D, Park M, Hur T, Kemp S, Dessie T, Kim MS, Lee SR, Te Pas MFW, Kim JM, Park JE (2019) Comparative transcriptome analysis of Ethiopian indigenous chickens from low and high altitudes under heat stress condition reveals differential immune response. Anim Genet 50(1):42–53.  https://doi.org/10.1111/age.12740 (Epub 2018 Nov 25)CrossRefPubMedGoogle Scholar
  35. Paten AM, Duncan EJ, Pain SJ, Peterson SW, Kenyon PR, Blair HT, Dearden PK (2015) Functional development of the adult ovine mammary gland–insights from gene expression profiling. BMC Genom 5(16):748.  https://doi.org/10.1186/s12864-015-1947-9CrossRefGoogle Scholar
  36. Reecy JM, Spurlock DM, Stahl CH (2006) Gene expression profiling: insights into skeletal muscle growth and development. J Anim Sci 84 Suppl:E150-4 (Review)CrossRefGoogle Scholar
  37. Salleh MS, Mazzoni G, Höglund JK, Olijhoek DW, Lund P, Løvendahl P, Kadarmideen HN (2017) RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle. BMC Genom 18(1):258.  https://doi.org/10.1186/s12864-017-3622-9CrossRefGoogle Scholar
  38. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470CrossRefGoogle Scholar
  39. Schneider AK, Niemeyer CM (2018) DNA surface technology: from gene sensors to integrated systems for life and materials sciences. Angew Chem Int Ed Engl 57(52):16959–16967.  https://doi.org/10.1002/anie.201811713CrossRefPubMedGoogle Scholar
  40. Sheng X, Ni H, Liu Y, Li J, Zhang L, Guo Y (2014) RNA-seq analysis of bovine intramuscular, subcutaneous and perirenal adipose tissues. Mol Biol Rep 41(3):1631–1637. https://doi.org/10.1007/s11033-013-3010-8 (Epub 2014 Jan 8)CrossRefGoogle Scholar
  41. Sodhi SS, Park WC, Ghosh M, Kim JN, Sharma N, Shin KY, Cho IC, Ryu YC, Oh SJ, Kim SH, Song KD, Hong SP, Cho SA, Kim HB, Jeong DK (2014) Comparative transcriptomic analysis to identify differentially expressed genes in fat tissue of adult Berkshire and Jeju Native Pig using RNA-seq. Mol Biol Rep 41(9):6305–6315.  https://doi.org/10.1007/s11033-014-3513-y (Epub 2014 Jul 11)CrossRefPubMedGoogle Scholar
  42. Srikanth K, Kwon A, Lee E, Chung H (2017) Characterization of genes and pathways that respond to heat stress in Holstein calves through transcriptome analysis. Cell Stress Chaperones 22(1):29–42.  https://doi.org/10.1007/s12192-016-0739-8 (Epub 2016 Nov 16)CrossRefPubMedGoogle Scholar
  43. Suárez-Vega A, Gutiérrez-Gil B, Klopp C, Robert-Granie C, Tosser-Klopp G, Arranz JJ (2015) Characterization and comparative analysis of the milk transcriptome in two dairy sheep breeds using RNA sequencing. Sci Rep 18(5):18399.  https://doi.org/10.1038/srep18399CrossRefGoogle Scholar
  44. Suchyta SP, Sipkovsky S, Halgren RG, Kruska R, Elftman M, Weber-Nielsen M, Vandehaar MJ, Xiao L, Tempelman RJ, Coussens PM (2003) Bovine mammary gene expression profiling using a cDNA microarray enhanced for mammary-specific transcripts. Physiol Genomics 16(1):8–18CrossRefGoogle Scholar
  45. Sudre K, Cassar-Malek I, Listrat A, Ueda Y, Leroux C, Jurie C, Auffray C, Renand G, Martin P, Hocquette JF (2005) Biochemical and transcriptomic analyses of two bovine skeletal muscles in Charolais bulls divergently selected for muscle growth. Meat Sci 70(2):267–277.  https://doi.org/10.1016/j.meatsci.2005.01.012 (Epub 2005 Mar 16)CrossRefPubMedGoogle Scholar
  46. Ushizawa K, Herath CB, Kaneyama K, Shiojima S, Hirasawa A, Takahashi T, Imai K, Ochiai K, Tokunaga T, Tsunoda Y, Tsujimoto G, Hashizume K (2004) cDNA microarray analysis of bovine embryo gene expression profiles during the pre-implantation period. Reprod Biol Endocrinol 24(2):77CrossRefGoogle Scholar
  47. Verma P, Sharma A, Sodhi M, Thakur K, Kataria RS, Niranjan SK, Bharti VK, Kumar P, Giri A, Kalia S, Mukesh M (2018a) Transcriptome analysis of circulating PBMCs to understand mechanism of high altitude adaptation in native cattle of Ladakh Region. Sci Rep 8(1):7681.  https://doi.org/10.1038/s41598-018-25736-7CrossRefPubMedPubMedCentralGoogle Scholar
  48. Verma P, Sharma A, Sodhi M, Thakur K, Bharti VK, Kumar P, Giri A, Kalia S, Swami SK, Mukesh M (2018b) Overexpression of genes associated with hypoxia in cattle adapted to Trans Himalayan region of Ladakh. Cell Biol Int.  https://doi.org/10.1002/cbin.10981 (In press)CrossRefGoogle Scholar
  49. Wang J, Dean DC, Hornicek FJ, Shi H, Duan Z (2018a) RNA sequencing (RNA-Seq) and its application in ovarian cancer. Gynecol Oncol 152(1):194–201. https://doi.org/10.1016/j.ygyno.2018.10.002 (Epub 2018 Oct 5. Review)CrossRefGoogle Scholar
  50. Wang W, Wang H, Tang H, Gan J, Shi C, Lu Q, Fang D, Yi J, Fu M (2018b) Genetic structure of six cattle populations revealed by transcriptome-wide SNPs and gene expression. Genes Genomics. 40(7):715–724.  https://doi.org/10.1007/s13258-018-0677-1 (Epub 2018 Mar 26)CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wang X, Zhou G, Xu X, Geng R, Zhou J, Yang Y, Yang Z, Chen Y (2014) Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep. Gene 549(2):252–257.  https://doi.org/10.1016/j.gene.2014.07.072 (Epub 2014 Aug 1)CrossRefPubMedGoogle Scholar
  52. Wang YH, Byrne KA, Reverter A, Harper GS, Taniguchi M, McWilliam SM, Mannen H, Oyama K, Lehnert SA (2005) Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mamm Genome 16(3):201–210CrossRefGoogle Scholar
  53. Weikard R, Hadlich F, Hammon HM, Frieten D, Gerbert C, Koch C, Dusel G, Kuehn C (2018) Long noncoding RNAs are associated with metabolic and cellular processes in the jejunum mucosa of pre-weaning calves in response to different diets. Oncotarget. 9(30):21052–21069.  https://doi.org/10.18632/oncotarget.24898 (eCollection 2018 Apr 20)CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wickramasinghe S, Rincon G, Islas-Trejo A, Medrano JF (2012) Transcriptional profiling of bovine milk using RNA sequencing. BMC Genom 25(13):45.  https://doi.org/10.1186/1471-2164-13-45CrossRefGoogle Scholar
  55. Wolf JB, Bayer T, Haubold B, Schilhabel M, Rosenstiel P, Tautz D (2010) Nucleotide divergence vs. gene expression differentiation: comparative transcriptome sequencing in natural isolates from the carrion crow and its hybrid zone with the hooded crow. Mol Ecol 19 Suppl 1:162–175.  https://doi.org/10.1111/j.1365-294x.2009.04471.xCrossRefGoogle Scholar
  56. Wu G, Wan X, Xu B (2018) A new estimation of protein-level false discovery rate. BMC Genom 19(Suppl 6):567.  https://doi.org/10.1186/s12864-018-4923-3CrossRefGoogle Scholar
  57. Xue L, Xie L, Song X, Song X (2018) Identification of potential tumor-educated platelets RNA biomarkers in non-small-cell lung cancer by integrated bioinformatical analysis. J Clin Lab Anal 32(7):e22450.  https://doi.org/10.1002/jcla.22450 (Epub 2018 Apr 17)CrossRefGoogle Scholar
  58. Yang H, Wang F, Li F, Ren C, Pang J, Wan Y, Wang Z, Feng X, Zhang Y (2018) Comprehensive analysis of long noncoding RNA and mRNA expression patterns in sheep testicular maturation. Biol Reprod 99(3):650–661.  https://doi.org/10.1093/biolre/ioy088CrossRefPubMedGoogle Scholar
  59. Yang Y, Zheng N, Zhao X, Zhang Y, Han R, Ma L, Zhao S, Li S, Guo T, Wang J (2015) Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis. J Proteomics 26(116):34–43.  https://doi.org/10.1016/j.jprot.2014.12.017 (Epub 2015 Jan 8)CrossRefGoogle Scholar
  60. Zhao FR, Xie YL, Liu ZZ, Shao JJ, Li SF, Zhang YG, Chang HY (2017) Transcriptomic analysis of porcine PBMCs in response to FMDV infection. Acta Trop 173:69–75.  https://doi.org/10.1016/j.actatropica.2017.05.009 (Epub 2017 May 8)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations