Advertisement

Genome Sequencing Technologies in Livestock Health System

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 553 Downloads

Abstract

Sequencing technologies are vital components of biological sciences. The multiple “omics” technologies have revolutionized animal healthcare management by improving speed, specificity, and sensitivity of diagnostic assays, and decreasing the probability of false-positive assays. It is possible to diagnose diseases much before the appearance of clinical symptoms.

Highlights

  • Sequencing is now an integral component of scientific livestock health and production

  • The bioinformatics methods are obligatory to analyze and infer the sequencing data.

Keywords

Genome sequencing Next-generation sequencing Genome analysis Drug targets 

References

  1. Abouelhoda M, Issa SA, Ghanem M (2012) Tavaxy: integrating taverna and galaxy workflows with cloud computing support. BMC Bioinformatics 4(13):77.  https://doi.org/10.1186/1471-2105-13-77CrossRefGoogle Scholar
  2. Ali OA, O’Rourke SM, Amish SJ, Meek MH, Luikart G, Jeffres C, Miller MR (2016) RAD capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202(2):389–400.  https://doi.org/10.1534/genetics.115.183665 (Epub 2015 Dec 29)CrossRefPubMedGoogle Scholar
  3. Anis E, Hawkins IK, Ilha MRS, Woldemeskel MW, Saliki JT, Wilkes RP (2018) Evaluation of targeted next-generation sequencing for detection of bovine pathogens in clinical samples. J Clin Microbiol 56(7). pii: e00399-18.  https://doi.org/10.1128/jcm.00399-18. Print 2018 Jul
  4. Aslam ML, Bastiaansen JW, Elferink MG, Megens HJ, Crooijmans RP, le Blomberg A, Fleischer RC, Van Tassell CP, Sonstegard TS, Schroeder SG, Groenen MA, Long JA (2012) Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo). BMC Genom 14(13):391.  https://doi.org/10.1186/1471-2164-13-391CrossRefGoogle Scholar
  5. Azhikina TL, Skvortsov TA, Radaeva TV, Mardanov AV, Ravin NV, Apt AS, Sverdlov ED (2010) A new technique for obtaining whole pathogen transcriptomes from infected host tissues. Biotechniques 48(2):139–144CrossRefGoogle Scholar
  6. Bai Y, Sartor M, Cavalcoli J (2012) Current status and future perspectives for sequencing livestock genomes. J Anim Sci Biotechnol 3(1):8CrossRefGoogle Scholar
  7. Bao E, Jiang T, Girke T (2014) AlignGraph: algorithm for secondary de novo genome assembly guided by closely related references. Bioinformatics 30(12):i319–i328.  https://doi.org/10.1093/bioinformatics/btu291CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bayliss SC, Verner-Jeffreys DW, Bartie KL, Aanensen DM, Sheppard SK, Adams A, Feil EJ (2017) The promise of whole genome pathogen sequencing for the molecular epidemiology of emerging aquaculture pathogens. Front Microbiol 3(8):121.  https://doi.org/10.3389/fmicb.2017.00121 (eCollection 2017). ReviewCrossRefGoogle Scholar
  9. Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol Chapter 19:Unit 19.10.1-21.  https://doi.org/10.1002/0471142727.mb1910s89
  10. Bock C, Halachev K, Büch J, Lengauer T (2009) EpiGRAPH: user-friendly software for statistical analysis and prediction of (epi)genomic data. Genome Biol 10(2):R14.  https://doi.org/10.1186/gb-2009-10-2-r14CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bock C, Von Kuster G, Halachev K, Taylor J, Nekrutenko A, Lengauer T (2010) Web-based analysis of (Epi-) genome data using EpiGRAPH and Galaxy. Methods Mol Biol 628:275–296.  https://doi.org/10.1007/978-1-60327-367-1_15CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brooks-Pollock E, de Jong MC, Keeling MJ, Klinkenberg D, Wood JL (2015) Eight challenges in modelling infectious livestock diseases. Epidemics 10:1–5.  https://doi.org/10.1016/j.epidem.2014.08.005 (Epub 2014 Aug 26)CrossRefPubMedGoogle Scholar
  13. Bryant J, Chewapreecha C, Bentley SD (2012) Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genomesequences. Future Microbiol 7(11):1283–1296.  https://doi.org/10.2217/fmb.12.108 ReviewCrossRefPubMedPubMedCentralGoogle Scholar
  14. Buermans HP, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta. 1842(10):1932–1941.  https://doi.org/10.1016/j.bbadis.2014.06.015 (Epub 2014 Jul 1). ReviewCrossRefGoogle Scholar
  15. Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M (2010) Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog 6(4):e1000834.  https://doi.org/10.1371/journal.ppat.1000834CrossRefPubMedPubMedCentralGoogle Scholar
  16. Carlson J, Li JZ, Zöllner S (2018) Helmsman: fast and efficient mutation signature analysis for massive sequencing datasets. BMC Genom 19(1):845.  https://doi.org/10.1186/s12864-018-5264-yCrossRefGoogle Scholar
  17. Challis GL (2014) Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways. J Ind Microbiol Biotechnol 41(2):219–232.  https://doi.org/10.1007/s10295-013-1383-2 (Epub 2013 Dec 10). ReviewCrossRefGoogle Scholar
  18. de Sousa AL, Maués D, Lobato A, Franco EF, Pinheiro K, Araújo F, Pantoja Y, da Costa da Silva AL, Morais J, Ramos RTJ (2018) PhageWeb—Web interface for rapid identification and characterization of prophages in bacterial genomes. Front Genet 9:644.  https://doi.org/10.3389/fgene.2018.00644 (eCollection 2018)
  19. Deurenberg RH, Bathoorn E, Chlebowicz MA, Couto N, Ferdous M, García-Cobos S, Kooistra-Smid AM, Raangs EC, Rosema S, Veloo AC, Zhou K, Friedrich AW, Rossen JW (2017) Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol 243:16–24.  https://doi.org/10.1016/j.jbiotec.2016.12.022 (Epub 2016 Dec 29). ReviewCrossRefGoogle Scholar
  20. Diaz-Sanchez S, Hanning I, Pendleton S, D’Souza D (2013) Next-generation sequencing: the future of molecular genetics in poultry production and food safety. Poult Sci 92(2):562–572.  https://doi.org/10.3382/ps.2012-02741 ReviewCrossRefPubMedGoogle Scholar
  21. Djari A, Esquerré D, Weiss B, Martins F, Meersseman C, Boussaha M, Klopp C, Rocha D (2013) Gene-based single nucleotide polymorphism discovery in bovine muscle using next-generation transcriptomic sequencing. BMC Genom 7(14):307.  https://doi.org/10.1186/1471-2164-14-307CrossRefGoogle Scholar
  22. Egorov AA, Sakharova EA, Anisimova AS, Dmitriev SE, Gladyshev VN, Kulakovskiy IV (2019) svist4get: a simple visualization tool for genomic tracks from sequencing experiments. BMC Bioinform 20(1):113.  https://doi.org/10.1186/s12859-019-2706-8CrossRefGoogle Scholar
  23. Feng J, Lupien A, Gingras H, Wasserscheid J, Dewar K, Légaré D, Ouellette M (2009) Genome sequencing of linezolid-resistant Streptococcus pneumoniae mutants reveals novel mechanisms of resistance. Genome Res 19(7):1214–1223.  https://doi.org/10.1101/gr.089342.108 (Epub 2009 Apr 6)CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gibbs EP (2005) Emerging zoonotic epidemics in the interconnected global community. Vet Rec 157(22):673–679CrossRefGoogle Scholar
  25. Gomez-Escribano JP, Castro JF, Razmilic V, Chandra G, Andrews B, Asenjo JA, Bibb MJ (2015) The streptomyces leeuwenhoekii genome: de novo sequencing and assembly in single contigs of the chromosome, circular plasmid pSLE1 and linear plasmid pSLE2. BMC Genom 30(16):485.  https://doi.org/10.1186/s12864-015-1652-8CrossRefGoogle Scholar
  26. Greenwood JM, Ezquerra AL, Behrens S, Branca A, Mallet L (2016) Current analysis of host-parasite interactions with a focus on next generation sequencing data. Zoology (Jena) 119(4):298–306.  https://doi.org/10.1016/j.zool.2016.06.010 (Epub 2016 Jun 30)CrossRefGoogle Scholar
  27. Greub G, Kebbi-Beghdadi C, Bertelli C, Collyn F, Riederer BM, Yersin C, Croxatto A, Raoult D (2009) High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach. PLoS ONE 4(12):e8423.  https://doi.org/10.1371/journal.pone.0008423CrossRefPubMedPubMedCentralGoogle Scholar
  28. Guizelini D, Raittz RT, Cruz LM, Souza EM, Steffens MB, Pedrosa FO (2016) GFinisher: a new strategy to refine and finish bacterial genome assemblies. Sci Rep 10(6):34963.  https://doi.org/10.1038/srep34963CrossRefGoogle Scholar
  29. Kim M, Park T, Yu Z (2017) Metagenomic investigation of gastrointestinal microbiome in cattle. Asian-Australas J Animal Sci 30(11):1515CrossRefGoogle Scholar
  30. Langridge GC, Phan MD, Turner DJ, Perkins TT, Parts L, Haase J, Charles I, Maskell DJ, Peters SE, Dougan G, Wain J, Parkhill J, Turner AK (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19(12):2308–2316.  https://doi.org/10.1101/gr.097097.109 (Epub 2009 Oct 13)CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lefrançois T, Pineau T (2014) Public health and livestock: emerging diseases in food animals. Anim Front 4(1):4–6CrossRefGoogle Scholar
  32. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ 3rd, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, DeJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin CW, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli KP, Parker HG, Pollinger JP, Searle SM, Sutter NB, Thomas R, Webber C, Baldwin J, Abebe A, Abouelleil A, Aftuck L, Ait-Zahra M, Aldredge T, Allen N, An P, Anderson S, Antoine C, Arachchi H, Aslam A, Ayotte L, Bachantsang P, Barry A, Bayul T, Benamara M, Berlin A, Bessette D, Blitshteyn B, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Brown A, Cahill P, Calixte N, Camarata J, Cheshatsang Y, Chu J, Citroen M, Collymore A, Cooke P, Dawoe T, Daza R, Decktor K, DeGray S, Dhargay N, Dooley K, Dooley K, Dorje P, Dorjee K, Dorris L, Duffey N, Dupes A, Egbiremolen O, Elong R, Falk J, Farina A, Faro S, Ferguson D, Ferreira P, Fisher S, FitzGerald M, Foley K, Foley C, Franke A, Friedrich D, Gage D, Garber M, Gearin G, Giannoukos G, Goode T, Goyette A, Graham J, Grandbois E, Gyaltsen K, Hafez N, Hagopian D, Hagos B, Hall J, Healy C, Hegarty R, Honan T, Horn A, Houde N, Hughes L, Hunnicutt L, Husby M, Jester B, Jones C, Kamat A, Kanga B, Kells C, Khazanovich D, Kieu AC, Kisner P, Kumar M, Lance K, Landers T, Lara M, Lee W, Leger JP, Lennon N, Leuper L, LeVine S, Liu J, Liu X, Lokyitsang Y, Lokyitsang T, Lui A, Macdonald J, Major J, Marabella R, Maru K, Matthews C, McDonough S, Mehta T, Meldrim J, Melnikov A, Meneus L, Mihalev A, Mihova T, Miller K, Mittelman R, Mlenga V, Mulrain L, Munson G, Navidi A, Naylor J, Nguyen T, Nguyen N, Nguyen C, Nguyen T, Nicol R, Norbu N, Norbu C, Novod N, Nyima T, Olandt P, O’Neill B, O’Neill K, Osman S, Oyono L, Patti C, Perrin D, Phunkhang P, Pierre F, Priest M, Rachupka A, Raghuraman S, Rameau R, Ray V, Raymond C, Rege F, Rise C, Rogers J, Rogov P, Sahalie J, Settipalli S, Sharpe T, Shea T, Sheehan M, Sherpa N, Shi J, Shih D, Sloan J, Smith C, Sparrow T, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Stone S, Sykes S, Tchuinga P, Tenzing P, Tesfaye S, Thoulutsang D, Thoulutsang Y, Topham K, Topping I, Tsamla T, Vassiliev H, Venkataraman V, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Yang S, Yang X, Young G, Yu Q, Zainoun J, Zembek L, Zimmer A, Lander ES (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438(7069):803–819CrossRefGoogle Scholar
  33. Liu W, Wu S, Lin Q, Gao S, Ding F, Zhang X, Aljohi HA, Yu J, Hu S (2018) RGAAT: a reference-based genome assembly and annotation tool for new genomes and upgrade of known genomes. Genomics Proteomics Bioinform 16(5):373–381.  https://doi.org/10.1016/j.gpb.2018.03.006 (Epub 2018 Dec 21)CrossRefGoogle Scholar
  34. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30(5):434–439.  https://doi.org/10.1038/nbt.2198 Erratum. In: Nat Biotechnol. 2012 Jun;30(6):562CrossRefPubMedGoogle Scholar
  35. Lu J, Salzberg SL (2018) Removing contaminants from databases of draft genomes. PLoS Comput Biol 14(6):e1006277.  https://doi.org/10.1371/journal.pcbi.1006277 (eCollection 2018 Jun)CrossRefGoogle Scholar
  36. Martin J, Zhu W, Passalacqua KD, Bergman N, Borodovsky M (2010) Bacillus anthracis genome organization in light of whole transcriptome sequencing. BMC Bioinformatics 11(Suppl 3):S10.  https://doi.org/10.1186/1471-2105-11-S3-S10CrossRefPubMedPubMedCentralGoogle Scholar
  37. McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT (2013) Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol 66(2):526–538.  https://doi.org/10.1016/j.ympev.2011.12.007 (Epub 2011 Dec 14). ReviewCrossRefGoogle Scholar
  38. Mertes F, Elsharawy A, Sauer S, van Helvoort JM, van der Zaag PJ, Franke A, Nilsson M, Lehrach H, Brookes AJ (2011) Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief Funct Genomics 10(6):374–386.  https://doi.org/10.1093/bfgp/elr033 (Epub 2011 Nov 26)CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, Thomas PD (2019) Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat Protoc 14(3):703–721.  https://doi.org/10.1038/s41596-019-0128-8 (Epub 2019 Feb 25)CrossRefGoogle Scholar
  40. Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P (2013) Metagenomics for pathogen detection in public health. Genome Med 5(9):81.  https://doi.org/10.1186/gm485 (eCollection 2013). ReviewCrossRefPubMedPubMedCentralGoogle Scholar
  41. Mohr C, Friedrich A, Wojnar D, Kenar E, Polatkan AC, Codrea MC, Czemmel S, Kohlbacher O, Nahnsen S (2018) qPortal: a platform for data-driven biomedical research. PLoS One 13(1):e0191603. https://doi.org/10.1371/journal.pone.0191603 (eCollection 2018)CrossRefGoogle Scholar
  42. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92(5):255–264.  https://doi.org/10.1016/j.ygeno.2008.07.001 (Epub 2008 Aug 24). ReviewCrossRefGoogle Scholar
  43. Nakano K, Shiroma A, Shimoji M, Tamotsu H, Ashimine N, Ohki S, Shinzato M, Minami M, Nakanishi T, Teruya K, Satou K, Hirano T (2017) Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area. Hum Cell. 30(3):149–161.  https://doi.org/10.1007/s13577-017-0168-8 (Epub 2017 Mar 31). ReviewCrossRefGoogle Scholar
  44. Otto TD, Dillon GP, Degrave WS, Berriman M (2011) RATT: rapid annotation transfer tool. Nucleic Acids Res 39(9):e57.  https://doi.org/10.1093/nar/gkq1268 (Epub 2011 Feb 8)CrossRefGoogle Scholar
  45. Pantoja Y, Pinheiro K, Veras A, Araújo F, Lopes de Sousa A, Guimarães LC, Silva A (2017) Ramos RTJ. PanWeb: a web interface for pan-genomic analysis. PLoS One. 12(5):e0178154.  https://doi.org/10.1371/journal.pone.0178154 (eCollection 2017)CrossRefGoogle Scholar
  46. Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu ZL, Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA, Rothschild MF, Smith TP, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann RT, Schook LB, Groenen MA (2009) Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS ONE 4(8):e6524.  https://doi.org/10.1371/journal.pone.0006524CrossRefPubMedPubMedCentralGoogle Scholar
  47. Senol Cali D, Kim JS, Ghose S, Alkan C, Mutlu O (2018) Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions. Brief Bioinform.  https://doi.org/10.1093/bib/bby017 (Epub ahead of print)
  48. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermüller J, Reinhardt R, Stadler PF, Vogel J (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464(7286):250–255.  https://doi.org/10.1038/nature08756 (Epub 2010 Feb 17)CrossRefPubMedGoogle Scholar
  49. Sharma D, Mal G, Kannan A, Bhar R, Sharma R, Singh B (2017) Degradation of euptox a by tannase-producing rumen bacteria from migratory goats. J Appl Microbiol 123(5):1194–1202CrossRefGoogle Scholar
  50. Sharma D, Sharma A, Verma SK, Singh B (2019) Targeting metabolic pathways proteins of Orientia tsutsugamushi using combined hierarchical approach to combat scrub typhus. J Mol Recognit 32(4):e2766.  https://doi.org/10.1002/jmr.2766 (Epub 2018 Oct 21)CrossRefGoogle Scholar
  51. Shi L, Meng X, Tseng E, Mascagni M, Wang Z (2019) SpaRC: scalable sequence clustering using Apache Spark. Bioinformatics 35(5):760–768.  https://doi.org/10.1093/bioinformatics/bty733CrossRefPubMedGoogle Scholar
  52. Singh B, Gautam SK, Verma V, Kumar M, Singh B (2008) Metagenomics in animal gastrointestinal ecosystem: potential biotechnological prospects. Anaerobe 14(3):138–144CrossRefGoogle Scholar
  53. Singh B, Bhat TK, Sharma OP, Kanwar SS, Rahi P, Gulati A (2012) Isolation of tannase-producing Enterobacter ludwigii GRT-1 from the rumen of migratory goats. Small Rumin Res 102(2–3):172–176CrossRefGoogle Scholar
  54. Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11(1):9–16.  https://doi.org/10.1038/nrg2695 (Epub 2009 Nov 24). ReviewCrossRefGoogle Scholar
  55. Srivatsan A, Han Y, Peng J, Tehranchi AK, Gibbs R, Wang JD, Chen R (2008) High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genet 4(8):e1000139.  https://doi.org/10.1371/journal.pgen.1000139CrossRefPubMedPubMedCentralGoogle Scholar
  56. Swain MT, Tsai IJ, Assefa SA, Newbold C, Berriman M, Otto TD (2012) A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs. Nat Protoc 7(7):1260–1284.  https://doi.org/10.1038/nprot.2012.068CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tellam RL, Lemay DG, Van Tassell CP, Lewin HA, Worley KC, Elsik CG (2009) Unlocking the bovine genome. BMC Genom 24(10):193.  https://doi.org/10.1186/1471-2164-10-193CrossRefGoogle Scholar
  58. Tomley FM, Shirley MW (2009) Livestock infectious diseases and zoonoses. Philos Trans R Soc Lond B Biol Sci 364(1530):2637–2642.  https://doi.org/10.1098/rstb.2009.0133CrossRefGoogle Scholar
  59. Urbaniak C, Sielaff AC, Frey KG, Allen JE, Singh N, Jaing C, Wheeler K, Venkateswaran K (2018) Detection of antimicrobial resistance genes associated with the international space station environmental surfaces. Sci Rep 8(1):814.  https://doi.org/10.1038/s41598-017-18506-4CrossRefPubMedPubMedCentralGoogle Scholar
  60. van Opijnen T, Bodi KL, Camilli A (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6(10):767–772.  https://doi.org/10.1038/nmeth.1377 (Epub 2009 Sep 20)CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang C, Mitsuya Y, Gharizadeh B, Ronaghi M, Shafer RW (2007) Characterization of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resistance. Genome Res 17(8):1195–1201 (Epub 2007 Jun 28)CrossRefGoogle Scholar
  62. Williams JL (2005) The use of marker-assisted selection in animal breeding and biotechnology. Rev Sci Tech 24(1):379–391. ReviewGoogle Scholar
  63. Williams JL, Iamartino D, Pruitt KD, Sonstegard T, Smith TPL, Low WY, Biagini T, Bomba L, Capomaccio S, Castiglioni B, Coletta A, Corrado F, Ferré F, Iannuzzi L, Lawley C, Macciotta N, McClure M, Mancini G, Matassino D, Mazza R, Milanesi M, Moioli B, Morandi N, Ramunno L, Peretti V, Pilla F, Ramelli P, Schroeder S, Strozzi F, Thibaud-Nissen F, Zicarelli L, Ajmone-Marsan P, Valentini A, Chillemi G, Zimin A (2017) Genome assembly and transcriptome resource for river buffalo, Bubalus bubalis (2n = 50). Gigascience 6(10):1–6.  https://doi.org/10.1093/gigascience/gix088CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. J Genet Genomics 38(3):95–109.  https://doi.org/10.1016/j.jgg.2011.02.003 (Epub 2011 Mar 15). ReviewCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations