Animal Genomics—A Current Perspective

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh


The livestock sector as an important subsector of agriculture plays an important role in national economy. In current era of molecular genetics, genomics and sequencing technologies applicable to genome, proteome and transriptome sequencing, and access to gigantic sequence data, a number of markers are identified and used to analyze genomic diversity. Molecular markers have emerged as amazing tools for selection of farm animals for beneficial traits, and detecting diseases prior to clinical symptoms. Researchers and scholars as beginners in livestock production and management must be familiar with types, advantages, and prospects of these valuable tools.

Key Points
  • Genetic evaluation of livestock is indispensable for their conservation and utilization

  • Molecular genetic markers have emerged as incredible tools for livestock selection and disease diagnosis.


Livestock genomics Genomic diversity Diversity analysis Microsattalite markers, RFLP DNA bar coding Microaarays 


  1. Ajmone-Marsan P, Negrini R, Milanesi E, Bozzi R, Nijman IJ, Buntjer JB, Valentini A, Lenstra JA (2002) Genetic distances within and across cattle breeds as indicated by biallelic AFLP markers. Anim Genet 33(4):280–286. Scholar
  2. Anderson S, de Bruijn MH, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156(4):683–717 (No abstract available)PubMedCrossRefGoogle Scholar
  3. Ashwell MS, Rexroad CE Jr, Miller RH, VanRaden PM (1996) Mapping economic trait loci for somatic cell score in Holstein cattle using microsatellite markers and selective genotyping. Anim Genet 27(4):235–242PubMedCrossRefGoogle Scholar
  4. Ashwell MS, Rexroad CE Jr, Miller RH, VanRaden PM, Da Y (1997) Detection of loci affecting milk production and health traits in an elite US Holstein population using microsatellite markers. Anim Genet 28:216–222CrossRefGoogle Scholar
  5. Beckman JS, Weber JL (1992) Survey of human and rat microsatellites. Genomics 12:627–631PubMedCrossRefGoogle Scholar
  6. Badola S, Bhattacharya TK, Biswas TK, Shivakumar BM, Kumar P, Sharma A (2004) A comparison on polymorphism of Beta-lactoglobulin gene in Bos indicus, Bos taurus and Indicine × Taurine crossbred cattle. Asian Aust J Anim Sci 17(6):733–736. Scholar
  7. Berggren KT, Ellegren H, Hewitt GM, Seddon JM (2005) Understanding the phylogeographic patterns of European hedgehogs, Erinaceus concolor and E. europaeus using the MHC. Heredity (Edinb) 95(1):84–90 CrossRefGoogle Scholar
  8. Baumung R, Simianer H, Hoffmann I (2004) Genetic diversity studies in farm animals—a survey Studien zur genetischen Diversität landwirtschaftlicher Nutztiere- ein globaler Überblick. J Anim Breed Genet 121(6):361–373CrossRefGoogle Scholar
  9. Biswas TK, Bhattacharya TK, Narayan AD, Badola S, Kumar P, Sharma A (2003) Growth hormone gene polymorphism and its effect on birth weight in cattle and buffalo. Asian Aust J Anim Sci 16(4):494–497. Scholar
  10. Bitgood JJ, Shoffner RN (1990) Cytology and cytogenetics. Poultry breeding. Genetics 22:401–427Google Scholar
  11. Bjørnstad G, Røed KH (2001) Breed demarcation and potential for breed allocation of horses assessed by microsatellite markers. Anim Genet 32(2):59–65PubMedCrossRefGoogle Scholar
  12. Bjørnstad G, Gunby E, Røed KH (2000) Genetic structure of Norwegian horse breeds. J Anim Breed Genet 117:307–317CrossRefGoogle Scholar
  13. Blears MJ, De Grandis SA, Lee H, Trevors JT (1998) Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Ind Microbiol Biotech 21:99–114. Scholar
  14. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331 (Review)PubMedPubMedCentralGoogle Scholar
  15. Brown JR, Beckenbach AT, Smith MJ (1993) Intraspecific DNA sequence variation of the mitochondrial control region of white sturgeon (Acipenser transmontanus). Mol Biol Evol 10(2):326–341PubMedGoogle Scholar
  16. Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A 76(4):1967–1971PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bruford MW, Bradley DG, Luikart G (2003) DNA markers reveal the complexity of livestock domestication. Nat Rev Genet 4(11):900–910 (Review)PubMedCrossRefGoogle Scholar
  18. Convention on Biological Diversity (CBD) (1992)
  19. Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A 91:3166–3170. Scholar
  20. Dixit SP, Verma NK, Aggarwal RAK, Vyas MK, Rana J, SharmaA Tyagia P, Arya P, Ulmek BR (2010) Genetic diversity and relationship among southern Indian goat breeds based onmicrosatellite markers. Small Rumin Res 91:153–159CrossRefGoogle Scholar
  21. FAO (2001) The states of the world’s animal genetic resource food and agriculture FAO. Rome, ItalyGoogle Scholar
  22. FAO (2007a) In: Rischkowsky B, Pilling D (eds) The state of the world’s animal genetic resources for food and agriculture. Rome.
  23. FAO (2007b) Global plan of action for animal genetic resources and the interlakendeclaration. Rome.
  24. FAO (2007c) In: In: Rischkowsky B, Pilling D (eds) The state of the world’s animal genetic resources for food and agriculture. RomeGoogle Scholar
  25. Fatima S, Bhonga CD, Ranka DN, Joshi CG (2008) Genetic variability and bottleneck studies in Zalawadi, Gohilwadi and Surti goat breeds of Gujarat (India) usingmicrosatellites. Small Rumin Res 77:58–64CrossRefGoogle Scholar
  26. Gebremedhin B, Flagstad Ø, Bekele A, Chala D, Bakkestuen V, Boessenkool S, Popp M, Gussarova G, Schrøder-Nielsen A, Nemomissa S, Brochmann C, Stenseth NC, Epp LS (2016) DNA metabarcoding reveals diet overlap between the endangered Walia Ibex and domestic goats—implications for conservation. PLoS ONE 11(7):e0159133. (eCollection 2016)PubMedPubMedCentralCrossRefGoogle Scholar
  27. Georges M, Dietz AB, Mishra A, Nielsen D, Sargeant LS, Sorensen A, Steele MR, Zhao X, Leipold H, Womack JE, Lathrop M (1993) Microsatellite mapping of the gene causing weaver disease in cattle will allow the study of an associated quantitative trait locus. Proc Natl Acad Sci U S A 90(3):1058–1062PubMedPubMedCentralCrossRefGoogle Scholar
  28. Goldstein DB, Schlötterer C (1999) Microsatellites: evolution and applications. Oxford University Press, New York, 368pGoogle Scholar
  29. Hall SJ, Bradley DG (1995) Conserving livestock breed biodiversity. Trends Ecol Evol 10(7):267–270PubMedCrossRefGoogle Scholar
  30. Hebert PD, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270(1512):313–321PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hebsgaard MB, Wiuf C, Gilbert MT, Glenner H, Willerslev E (2007) Evaluating Neanderthal genetics and phylogeny. J Mol Evol 64(1):50–60 (Epub 2006 Dec 1)PubMedCrossRefGoogle Scholar
  32. Jarne P, Lagoda PJ (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11(10):424–429PubMedCrossRefGoogle Scholar
  33. Jonker M, Van Meurs G, Balner H (1982) Typing for RhLA-D in rhesus monkeys: II. Genetics of the D antigens and their association with DR antigens in a population of unrelated animals. Tissue Antigens 19:69–78. Scholar
  34. Jordana J, Folch P, Aranguren JA (2001) Microsatellite analysis of genetic diversity in the Catalonian donkey breed. J Anim Breed Genet 118:57–63CrossRefGoogle Scholar
  35. Kantanen J, Olsaker I, Holm LE, Lien S, Vilkki J, Brusgaard K, Eythorsdottir E, Danell B, Adalsteinsson S (2000) Genetic diversity and population structure of 20 North European cattle breeds. J Hered 91(6):446–457PubMedCrossRefGoogle Scholar
  36. Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738 (No abstract available. PMID: 14156929)PubMedPubMedCentralGoogle Scholar
  37. Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. ProcNatlAcadSci U S A 75(6):2868–2872CrossRefGoogle Scholar
  38. Köhler-Rollefson I (1997) Indigenous practices of animal genetic resource management and their relevance for the conservation of domestic animal diversity in developing countries. J. Anim Breed Genet 114:231–238. Scholar
  39. Kumar KG, Ponsuksili S, Schellander K, Wimmers K (2004) Molecular cloning and sequencing of porcine C5 gene and its association with immunological traits. Immunogenetics 55(12):811–817 (Epub 2004 Feb 10)PubMedCrossRefGoogle Scholar
  40. Koringa PG, Joshi CG, Solanki JV, Rank DN (2008) Genetic characterization and bottleneck studies in Kathiawari horse breed of India. Haryana Vet 47:77–83Google Scholar
  41. Li S, Wang Q, Lin X, Jin X, Liu L, Wang C, Chen Q, Liu J, Liu H (2017) The use of “omics” in lactation research in dairy cows. Int J Mol Sci 18(5). pii: E983. (Review)PubMedCentralCrossRefGoogle Scholar
  42. Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44(3):397–401PubMedPubMedCentralGoogle Scholar
  43. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998a) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89(3):238–247PubMedCrossRefGoogle Scholar
  44. Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998b) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol. 7(8):963–974PubMedCrossRefGoogle Scholar
  45. MacHugh DE, Bradley DG (2001) Livestock genetic origins: goats buck the trend. Proc Natl Acad Sci U S A 98(10):5382–5384 (No abstract available)PubMedPubMedCentralCrossRefGoogle Scholar
  46. Maji S, Krithika S, Vasulu TS (2009) Phylogeographic distribution of mitochondrial DNA macrohaplogroup M in India. J Genet 88(1):127–139PubMedCrossRefGoogle Scholar
  47. Mallott EK, Garber PA, Malhi RS (2017) Integrating feeding behavior, ecological data, and DNA barcoding to identify developmental differences in invertebrate foraging strategies in wild white-faced capuchins (Cebus capucinus). Am J Phys Anthropol 162(2):241–254. (Epub 2016 Oct 5)PubMedCrossRefGoogle Scholar
  48. Martín-Burriel I, García-Muro E, Zaragoza P (1999) Genetic diversity analysis of six Spanish native cattle breeds using microsatellites. Anim Genet 30(3):177–182PubMedCrossRefGoogle Scholar
  49. McKay SD, Schnabel RD, Murdoch BM, Matukumalli LK, Aerts J, Coppieters W, Crews D, Dias Neto E, Gill CA, Gao C, Mannen H, Wang Z, Van Tassell CP, Williams JL, Taylor JF, Moore SS (2008) An assessment of population structure in eight breeds of cattle using a whole genome SNP panel. BMC Genet 20(9):37. Scholar
  50. Mishra BP, Kataria RS, Bulandi SS, Prakash B, Kathiravan P, Mukesh M, Sadana DK (2009a) Riverine status and genetic structure of Chilika buffalo of eastern India as inferred from cytogenetic and molecular marker-based analysis. J Anim Breed Genet 126(1):69–79. Scholar
  51. Mishra BP, Kataria RS, Kathiravan P, Bulandi SS, Singh KP, Sadana DK (2009b) Evaluation of genetic variability and mutation drift equilibrium of Banni buffalo using multi locus microsatellite markers. Trop Anim Health Prod 41(7):1203–1211. (Epub 2009 Jan 9)PubMedCrossRefGoogle Scholar
  52. Mishra BP, Kataria RS, Kathiravan P, Singh KP, Sadana DK, Joshi BK (2010) Microsatellite based genetic structuring reveals unique identity of Banni among river buffaloes of Western India. Livestock Sci 127:257–261CrossRefGoogle Scholar
  53. Moxon ER, Wills C (1999) DNA microsatellites: agents of evolution? Sci Am 280(1):94–99 (No abstract available)PubMedCrossRefGoogle Scholar
  54. Mukesh M, Sodhi M, Kataria RS, Mishra BP (2009) Use of microsatellite multilocus genotypic data for individual assignment assay in six native cattle breeds from North West Region of India. Livestock Sci 121:72–77CrossRefGoogle Scholar
  55. Negrini R, Nijman IJ, Milanesi E, Moazami-Goudarzi K, Williams JL, Erhardt G, Dunner S, Rodellar C, Valentini A, Bradley DG, Olsaker I, Kantanen J, Ajmone-Marsan P, Lenstra JA (2007) European cattle genetic diversity consortium. Differentiation of European cattle by AFLP fingerprinting. Anim Genet 38(1):60–66PubMedCrossRefGoogle Scholar
  56. O’Brien SJ (1994) A role for molecular genetics in biological conservation. Proc Natl Acad Sci U S A 91(13):5748–5755 (Review)PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ostrander EA, Jong PM, Rine J, Duyk G (1992) Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proc Natl Acad Sci U S A 89(8):3419–3423PubMedPubMedCentralCrossRefGoogle Scholar
  58. Pal A, Chakravarty AK, Bhattacharya TK, Joshi BK, Sharma A (2004) Detection of polymorphism of growth hormone gene for the analysis of relationship between allele type and growth traits in Karan Fries cattle. Asian Aust J Anim Sci 17:1334–1337CrossRefGoogle Scholar
  59. Pandey AK, Tantia MS, Kumar D, Mishra B, Chaudhury P, Vijh RK (2002) Microsatellite analysis of three poultry breeds of India. Asian Aus J Anim Sci 15(11):1536–1542. (Published online January 1, 2002)CrossRefGoogle Scholar
  60. Popescu NC, Evans CH, DiPaolo JA (1976) Chromosome patterns (G and C bands) of in vitro chemical carcinogen-transformed guinea pig cells. Cancer Res 36(4):1404–1413PubMedGoogle Scholar
  61. Ron M, Band M, Yanai A, Weller JI (1994) Mapping quantitative trait loci with DNA microsatellites in a commercial dairy cattle population. Anim Genet 25(4):259–264PubMedCrossRefGoogle Scholar
  62. Ruane J (1999) A critical review of the value of genetic distance studies in conservation of animal genetic resources. J Anim Breed Genet 116:317–323. Scholar
  63. Saitbekova N, Gaillard C, Obexer-Ruff G, Dolf G (1999) Genetic diversity in Swiss goat breeds based on microsatellite analysis. Anim Genet 30(1):36–41PubMedCrossRefGoogle Scholar
  64. Saitbekova N, Schlapfer J, Dolf G, Gaillard C (2001) Geneticrelationships in Swiss sheep breeds based on microsatellite analysis. J Anim Breed Genet 118:379–387CrossRefGoogle Scholar
  65. Sodhi M, Mukesh M, Mishra BP, Ahlawat SP, Prakash B, Sobti RC (2011a) Microsatellite analysis of genetic population structure of zebu cattle (Bos indicus) breeds from north-western region of India. Anim Biotechnol 22(1):16–29. Scholar
  66. Sodhi M, Mukesh M, Mishra BP, Parvesh K, Joshi BK (2011b) Analysis of genetic variation at the prolactin-RsaI (PRL-RsaI) locus in Indian native cattle breeds (Bos indicus). Biochem Genet 49(1–2):39–45. Scholar
  67. Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol 9(10):1517–1528PubMedCrossRefGoogle Scholar
  68. Strand M, Prolla TA, Liskay RM, Petes TD (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. 365(6443):274–276 (Erratum in: Nature 1994 Apr 7; 368(6471):569)PubMedCrossRefGoogle Scholar
  69. Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144(1):389–399PubMedPubMedCentralGoogle Scholar
  70. Tarnita CE, Antal T, Ohtsuki H, Nowak MA (2009) Evolutionary dynamics in set structured populations. Proc Natl Acad Sci U S A 106(21):8601–8604. (Epub 2009 May 11)PubMedPubMedCentralCrossRefGoogle Scholar
  71. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414PubMedPubMedCentralCrossRefGoogle Scholar
  72. Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44(3):388–396PubMedPubMedCentralGoogle Scholar
  73. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18(24):7213–7218PubMedPubMedCentralCrossRefGoogle Scholar
  74. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535PubMedPubMedCentralCrossRefGoogle Scholar
  75. Yang W, Kang X, Yang Q, Lin Y, Fang MY (2013) Review on the development of genotyping methods for assessing farm animal diversity. J Anim Sci Biotechnol 4:2. Scholar
  76. Zhang R, Zhao A, Wang X, Zhang Z (2017) Diversity of tick species on domestic animals in Shandong Province, China, using DNA barcoding. Exp Appl Acarol 73(1):79–89. Scholar
  77. Zhu Y, Strassmann JE, Queller DC (2000) Insertions, substitutions, and the origin of microsatellites. Genet Res 76(3):227–236PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations