Skip to main content

Reproduction Biotechnology in Goats

  • Chapter
  • First Online:
Advances in Animal Biotechnology
  • 1448 Accesses

Abstract

Goat is an important small ruminant livestock species with ubiquitous distribution in most countries. Goats are known for their unique browsing habits, and quality milk, meat, and skin production. A number of transgenic goats are developed for use as bioreactors to produce recombinant proteins of therapeutic importance. Reproduction biotechniques, namely embryo cryopreservation, sperm sexing and cryopreservation, nuclear transfer cloning, and genome editing, have important contribution goat production.

Key Points

  • Goats are important multipurpose livestock species reared all over the world

  • Due to peculiar characteristics, the goats are preferred for producing recombinant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abril-Sánchez S, Freitas-de-Melo A, Beracochea F, Damián JP, Giriboni J, Santiago-Moreno J, Ungerfeld R (2017) Sperm collection by transrectal ultrasound-guided massage of the accessory sex glands is less stressful than electroejaculation without altering sperm characteristics in conscious goat bucks. Theriogenology 98:82–87. https://doi.org/10.1016/j.theriogenology.2017.05.006

    Article  PubMed  Google Scholar 

  • Amiri Yekta A, Dalman A, Eftekhari-Yazdi P, Sanati MH, Shahverdi AH, Fakheri R, Vazirinasab H, Daneshzadeh MT, Vojgani M, Zomorodipour A, Fatemi N, Vahabi Z, Mirshahvaladi S, Ataei F, Bahraminejad E, Masoudi N, Rezazadeh Valojerdi M, Gourabi H (2013) Production of transgenic goats expressing human coagulation factor IX in the mammary glands after nuclear transfer using transfected fetal fibroblast cells. Transgenic Res 22(1):131–142. https://doi.org/10.1007/s11248-012-9634-y

    Article  CAS  PubMed  Google Scholar 

  • Baguisi A, Behboodi E, Melican DT, Pollock JS, Destrempes MM, Cammuso C, Williams JL, Nims SD, Porter CA, Midura P, Palacios MJ, Ayres SL, Denniston RS, Hayes ML, Ziomek CA, Meade HM, Godke RA, Gavin WG, Overström EW, Echelard Y (1999) Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17(5):456–461

    Article  CAS  PubMed  Google Scholar 

  • Bai DP, Yang MM, Qu L, Chen YL (2017) Generation of a transgenic cashmere goat using the piggyBac transposition system. Theriogenology 15(93):1–6. https://doi.org/10.1016/j.theriogenology.2017.01.036

    Article  CAS  Google Scholar 

  • Bathgate R, Mace N, Heasman K, Evans G, Maxwell WM, de Graaf SP (2013) Birth of kids after artificial insemination with sex-sorted, frozen-thawed goat spermatozoa. Reprod Domest Anim 48(6):893–898. https://doi.org/10.1111/rda.12182

    Article  CAS  PubMed  Google Scholar 

  • Behboodi E, Memili E, Melican DT, Destrempes MM, Overton SA, Williams JL, Flanagan PA, Butler RE, Liem H, Chen LH, Meade HM, Gavin WG, Echelard Y (2004) Viable transgenic goats derived from skin cells. Transgenic Res 13(3):215–224

    Article  CAS  PubMed  Google Scholar 

  • Carneiro IS, Menezes JNR, Maia JA, Miranda AM, Oliveira VBS, Murray JD, Maga EA, Bertolini M, Bertolini LR (2018) Milk from transgenic goat expressing human lysozyme for recovery and treatment of gastrointestinal pathogens. Eur J Pharm Sci 15(112):79–86. https://doi.org/10.1016/j.ejps.2017.11.005

    Article  CAS  Google Scholar 

  • Chen H, Zuo Q, Wang Y, Song J, Yang H, Zhang Y, Li B (2017) Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BMC Biotechnol 17(1):11. https://doi.org/10.1186/s12896-017-0336-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng S, Wang X, Wang Z, Chen S, Wang Y, Hao X, Sun T, Zhang Y, Lian Z, Liu Y (2017) In vitro production of functional haploid sperm cells from male germ cells of Saanen dairy goat. Theriogenology 90:120–128. https://doi.org/10.1016/j.theriogenology.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  • Ferreira-Silva JC, Moura MT, Silva TD, Oliveira LRS, Chiamenti A, Figueirêdo Freitas VJ (2017) Oliveira MAL Full-term potential of goat in vitro produced embryos after different cryopreservation methods. Cryobiology 75:75–79. https://doi.org/10.1016/j.cryobiol.2017.01.009 (Epub 2017 Jan 27)

    Article  CAS  PubMed  Google Scholar 

  • Gavin W, Blash S, Buzzell N, Pollock D, Chen L, Hawkins N, Howe J, Miner K, Pollock J, Porter C, Schofield M, Echelard Y, Meade H (2018) Generation of transgenic goats by pronuclear microinjection: a retrospective analysis of a commercial operation (1995–2012). Transgenic Res 27(1):115–122. https://doi.org/10.1007/s11248-017-0050-1

    Article  CAS  PubMed  Google Scholar 

  • Guignot F, Bouttier A, Baril G, Salvetti P, Pignon P, Beckers JF, Touzé JL, Cognié J, Traldi AS, Cognié Y, Mermillod P (2006) Improved vitrification method allowing direct transfer of goat embryos. Theriogenology 66(4):1004–1011

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Yu T, Lei L, Duan A, Ma X, Wang H (2017) Conversion of goat fibroblasts into lineage-specific cells using a direct reprogramming strategy. Anim Sci J 88(5):745–754. https://doi.org/10.1111/asj.12700

    Article  CAS  PubMed  Google Scholar 

  • Haenlein GF (2001) Past, present, and future perspectives of small ruminant dairy research. J Dairy Sci 84(9):2097–2115

    Article  CAS  PubMed  Google Scholar 

  • Haenlein GF, Ramirez RG (2007) Potential mineral deficiencies on arid rangelands for small ruminants with special reference to Mexico. Small Rumin Res 68:35–41

    Article  Google Scholar 

  • Hao F, Yan W, Li X, Wang H, Wang Y, Hu X, Liu X, Liang H, Liu D (2018) Generation of cashmere goats carrying an EDAR gene mutant using CRISPR-Cas9-mediated genome editing. Int J Biol Sci 14(4):427–436. https://doi.org/10.7150/ijbs.23890 (eCollection 2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatziminaoglou Y, Boyazoglu J (2004) The goat in ancient civilisations: from the Fertile Crescent to the Aegean Sea. Small Rumin Res 21:123–129

    Article  Google Scholar 

  • He N, Dong Z, Zhu B, Nuo M, Bou S, Liu D (2016) Expression of pluripotency markers in Arbas Cashmere goat hair follicle stem cells. Vitro Cell Dev Biol Anim 52(7):782–788. https://doi.org/10.1007/s11626-016-0023-3

    Article  CAS  Google Scholar 

  • He Z, Lu R, Zhang T, Jiang L, Zhou M, Wu D, Cheng Y (2018) A novel recombinant human plasminogen activator: Efficient expression and hereditary stability in transgenic goats and in vitro thrombolytic bioactivity in the milk of transgenic goats. PLoS One 13(8):e0201788. https://doi.org/10.1371/journal.pone.0201788 (eCollection 2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Keefer CL, Keyston R, Lazaris A, Bhatia B, Begin I, Bilodeau AS, Zhou FJ, Kafidi N, Wang B, Baldassarre H, Karatzas CN (2002) Production of cloned goats after nuclear transfer using adult somatic cells. Biol Reprod 66(1):199–203

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Agarwal P, Das K, Mili B, Madhusoodan AP, Kumar A, Bag S (2016) Isolation and characterization of mesenchymal stem cells from caprine umbilical cord tissue matrix. Tissue Cell 48(6):653–658. https://doi.org/10.1016/j.tice.2016.06.004

    Article  CAS  PubMed  Google Scholar 

  • Maga EA, Shoemaker CF, Rowe JD, Bondurant RH, Anderson GB, Murray JD (2006) Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland. J Dairy Sci 89(2):518–524

    Article  CAS  PubMed  Google Scholar 

  • Mao T, Han C, Deng R, Wei B, Meng P, Luo Y, Zhang Y (2018) Treating donor cells with 2-PCPA corrects aberrant histone H3K4 dimethylation and improves cloned goat embryo development. Syst Biol Reprod Med 64(3):174–182. https://doi.org/10.1080/19396368.2018.1446229

    Article  CAS  PubMed  Google Scholar 

  • Melican D, Gavin W (2008) Repeat superovulation, non-surgical embryo recovery, and surgical embryo transfer in transgenic dairy goats. Theriogenology 69(2):197–203

    Article  CAS  PubMed  Google Scholar 

  • Morand-Fehr P, Boutonnet JP, Devendra C, Dubeuf JP, Haenlein GFW, Holst P, Mowlem L, Caote J (2004) Strategy for goat farming in the 21st century. Small Rumin Res 51(2):175–183. https://doi.org/10.1016/j.smallrumres.2003.08.013

    Article  Google Scholar 

  • Parrilla I, Vazquez JM, Roca J, Martinez EA (2004) Flow cytometry identification of X- and Y-chromosome-bearing goat spermatozoa. Reprod Domest Anim 39(1):58–60

    Article  CAS  PubMed  Google Scholar 

  • Pratheesh MD, Dubey PK, Gade NE, Nath A, Sivanarayanan TB, Madhu DN, Somal A, Baiju I, Sreekumar TR, Gleeja VL, Bhatt IA, Chandra V, Amarpal Sharma B, Saikumar G, Taru Sharma G (2017) Comparative study on characterization and wound healing potential of goat (Capra hircus) mesenchymal stem cells derived from fetal origin amniotic fluid and adult bone marrow. Res Vet Sci 112:81–88. https://doi.org/10.1016/j.rvsc.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Yang S, Xu J, Xia C, Li X, An L, Tian J (2018) Deep insemination with sex-sorted Cashmere goat sperm processed in the presence of antioxidants. Reprod Domest Anim 53(1):11–19. https://doi.org/10.1111/rda.13045

    Article  CAS  PubMed  Google Scholar 

  • Reggio BC, James AN, Green HL, Gavin WG, Behboodi E, Echelard Y, Godke RA (2001) Cloned transgenic offspring resulting from somatic cell nuclear transfer in the goat: oocytes derived from both follicle-stimulating hormone-stimulated and nonstimulated abattoir-derived ovaries. Biol Reprod 65(5):1528–1533

    Article  CAS  PubMed  Google Scholar 

  • Saipin N, Noophun J, Chumyim P, Rungsiwiwut R (2018) Goat milk: non-invasive source for mammary epithelial cell isolation and in vitro culture. Anat Histol Embryol 47(3):187–194. https://doi.org/10.1111/ahe.12339

    Article  CAS  PubMed  Google Scholar 

  • Salmon VM, Leclerc P, Bailey JL (2017) Novel technical strategies to optimize cryopreservation of goat semen using cholesterol-loaded cyclodextrin. Cryobiology 74:19–24. https://doi.org/10.1016/j.cryobiol.2016.12.010

    Article  CAS  PubMed  Google Scholar 

  • Sandmaier SE, Nandal A, Powell A, Garrett W, Blomberg L, Donovan DM, Talbot N, Telugu BP (2015) Generation of induced pluripotent stem cells from domestic goats. Mol Reprod Dev 82(9):709–721. https://doi.org/10.1002/mrd.22512

    Article  CAS  PubMed  Google Scholar 

  • Silanikove N (2000) Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest Prod Sci 67:1–18

    Article  Google Scholar 

  • Smith V (2006) Food fit for the soul of a Pharaoh. The Mortuary temple’s bakeries and breweries. Expedition 48:27–30

    Google Scholar 

  • Traldi AS, Leboeuf B, Cognié Y, Poulin N, Mermillod P (1999) Comparative results of in vitro and in vivo survival of vitrified in vitro produced goat and sheep embryos. Theriogenology 51(1):175

    Article  Google Scholar 

  • Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, Dong Z, Niu Y, Shi B, Cai B, Liu J, Huang S, Yan H, Zhao X, Zhou G, He X, Chen X, Yang Y, Jiang Y, Shi L, Tian X, Wang Y, Ma B, Huang X, Qu L, Chen Y (2015) Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep 10(5):13878. https://doi.org/10.1038/srep13878

    Article  Google Scholar 

  • Wang X, Niu Y, Zhou J, Zhu H, Ma B, Yu H, Yan H, Hua J, Huang X, Qu L, Chen Y (2018) CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass. Anim Genet 49(1):43–51. https://doi.org/10.1111/age.12626

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Chen J, Liu S, Zhang A, Xu X, Wang X, Lu P, Cheng G (2013) Large-scale production of functional human lysozyme in transgenic cloned goats. J Biotechnol. pii: S0168-1656(13)00456-2. https://doi.org/10.1016/j.jbiotec.2013.10.023

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Lu R, Yuan Y, Zhang T, Song S, Qi Z, Shao B, Zhu M, Mi F, Cheng Y (2016) Efficient TALEN-mediated myostatin gene editing in goats. BMC Dev Biol 16(1):26. https://doi.org/10.1186/s12861-016-0126-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZR, Zhong BS, Jia RX, Wan YJ, Zhang YL, Fan YX, Wang LZ, You JH, Wang ZY, Wang F (2013) Production of myostatin-targeted goat by nuclear transfer from cultured adult somatic cells. Theriogenology 79(2):225–233. https://doi.org/10.1016/j.theriogenology.2012.08.006

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Wan Y, Guo R, Deng M, Deng K, Wang Z, Zhang Y, Wang F (2017) Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS ONE 12(10):e0186056. https://doi.org/10.1371/journal.pone.0186056 (eCollection 2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Hu L, Liu J, Chen H, Cui C, Song Y, Jin Y, Zhang Y (2016) Generation of β-lactoglobulin-modified transgenic goats by homologous recombination. FEBS J 283(24):4600–4613. https://doi.org/10.1111/febs.13950

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birbal Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, B., Mal, G., Gautam, S.K., Mukesh, M. (2019). Reproduction Biotechnology in Goats. In: Advances in Animal Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-21309-1_27

Download citation

Publish with us

Policies and ethics