Advertisement

Reproduction Biotechnology in Goats

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 543 Downloads

Abstract

Goat is an important small ruminant livestock species with ubiquitous distribution in most countries. Goats are known for their unique browsing habits, and quality milk, meat, and skin production. A number of transgenic goats are developed for use as bioreactors to produce recombinant proteins of therapeutic importance. Reproduction biotechniques, namely embryo cryopreservation, sperm sexing and cryopreservation, nuclear transfer cloning, and genome editing, have important contribution goat production.

Key Points
  • Goats are important multipurpose livestock species reared all over the world

  • Due to peculiar characteristics, the goats are preferred for producing recombinant proteins.

Keywords

Reproduction biotechnology Transgenic goats Recombinant therapeutics Biomedical applications 

References

  1. Abril-Sánchez S, Freitas-de-Melo A, Beracochea F, Damián JP, Giriboni J, Santiago-Moreno J, Ungerfeld R (2017) Sperm collection by transrectal ultrasound-guided massage of the accessory sex glands is less stressful than electroejaculation without altering sperm characteristics in conscious goat bucks. Theriogenology 98:82–87.  https://doi.org/10.1016/j.theriogenology.2017.05.006CrossRefPubMedGoogle Scholar
  2. Amiri Yekta A, Dalman A, Eftekhari-Yazdi P, Sanati MH, Shahverdi AH, Fakheri R, Vazirinasab H, Daneshzadeh MT, Vojgani M, Zomorodipour A, Fatemi N, Vahabi Z, Mirshahvaladi S, Ataei F, Bahraminejad E, Masoudi N, Rezazadeh Valojerdi M, Gourabi H (2013) Production of transgenic goats expressing human coagulation factor IX in the mammary glands after nuclear transfer using transfected fetal fibroblast cells. Transgenic Res 22(1):131–142.  https://doi.org/10.1007/s11248-012-9634-yCrossRefPubMedGoogle Scholar
  3. Baguisi A, Behboodi E, Melican DT, Pollock JS, Destrempes MM, Cammuso C, Williams JL, Nims SD, Porter CA, Midura P, Palacios MJ, Ayres SL, Denniston RS, Hayes ML, Ziomek CA, Meade HM, Godke RA, Gavin WG, Overström EW, Echelard Y (1999) Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17(5):456–461CrossRefGoogle Scholar
  4. Bai DP, Yang MM, Qu L, Chen YL (2017) Generation of a transgenic cashmere goat using the piggyBac transposition system. Theriogenology 15(93):1–6.  https://doi.org/10.1016/j.theriogenology.2017.01.036CrossRefGoogle Scholar
  5. Bathgate R, Mace N, Heasman K, Evans G, Maxwell WM, de Graaf SP (2013) Birth of kids after artificial insemination with sex-sorted, frozen-thawed goat spermatozoa. Reprod Domest Anim 48(6):893–898.  https://doi.org/10.1111/rda.12182CrossRefPubMedGoogle Scholar
  6. Behboodi E, Memili E, Melican DT, Destrempes MM, Overton SA, Williams JL, Flanagan PA, Butler RE, Liem H, Chen LH, Meade HM, Gavin WG, Echelard Y (2004) Viable transgenic goats derived from skin cells. Transgenic Res 13(3):215–224CrossRefGoogle Scholar
  7. Carneiro IS, Menezes JNR, Maia JA, Miranda AM, Oliveira VBS, Murray JD, Maga EA, Bertolini M, Bertolini LR (2018) Milk from transgenic goat expressing human lysozyme for recovery and treatment of gastrointestinal pathogens. Eur J Pharm Sci 15(112):79–86.  https://doi.org/10.1016/j.ejps.2017.11.005CrossRefGoogle Scholar
  8. Chen H, Zuo Q, Wang Y, Song J, Yang H, Zhang Y, Li B (2017) Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BMC Biotechnol 17(1):11.  https://doi.org/10.1186/s12896-017-0336-7CrossRefPubMedPubMedCentralGoogle Scholar
  9. Deng S, Wang X, Wang Z, Chen S, Wang Y, Hao X, Sun T, Zhang Y, Lian Z, Liu Y (2017) In vitro production of functional haploid sperm cells from male germ cells of Saanen dairy goat. Theriogenology 90:120–128.  https://doi.org/10.1016/j.theriogenology.2016.12.002CrossRefPubMedGoogle Scholar
  10. Ferreira-Silva JC, Moura MT, Silva TD, Oliveira LRS, Chiamenti A, Figueirêdo Freitas VJ (2017) Oliveira MAL Full-term potential of goat in vitro produced embryos after different cryopreservation methods. Cryobiology 75:75–79. https://doi.org/10.1016/j.cryobiol.2017.01.009 (Epub 2017 Jan 27)CrossRefGoogle Scholar
  11. Gavin W, Blash S, Buzzell N, Pollock D, Chen L, Hawkins N, Howe J, Miner K, Pollock J, Porter C, Schofield M, Echelard Y, Meade H (2018) Generation of transgenic goats by pronuclear microinjection: a retrospective analysis of a commercial operation (1995–2012). Transgenic Res 27(1):115–122.  https://doi.org/10.1007/s11248-017-0050-1CrossRefPubMedGoogle Scholar
  12. Guignot F, Bouttier A, Baril G, Salvetti P, Pignon P, Beckers JF, Touzé JL, Cognié J, Traldi AS, Cognié Y, Mermillod P (2006) Improved vitrification method allowing direct transfer of goat embryos. Theriogenology 66(4):1004–1011CrossRefGoogle Scholar
  13. Guo Y, Yu T, Lei L, Duan A, Ma X, Wang H (2017) Conversion of goat fibroblasts into lineage-specific cells using a direct reprogramming strategy. Anim Sci J 88(5):745–754.  https://doi.org/10.1111/asj.12700CrossRefPubMedGoogle Scholar
  14. Haenlein GF (2001) Past, present, and future perspectives of small ruminant dairy research. J Dairy Sci 84(9):2097–2115CrossRefGoogle Scholar
  15. Haenlein GF, Ramirez RG (2007) Potential mineral deficiencies on arid rangelands for small ruminants with special reference to Mexico. Small Rumin Res 68:35–41CrossRefGoogle Scholar
  16. Hao F, Yan W, Li X, Wang H, Wang Y, Hu X, Liu X, Liang H, Liu D (2018) Generation of cashmere goats carrying an EDAR gene mutant using CRISPR-Cas9-mediated genome editing. Int J Biol Sci 14(4):427–436.  https://doi.org/10.7150/ijbs.23890 (eCollection 2018)CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hatziminaoglou Y, Boyazoglu J (2004) The goat in ancient civilisations: from the Fertile Crescent to the Aegean Sea. Small Rumin Res 21:123–129CrossRefGoogle Scholar
  18. He N, Dong Z, Zhu B, Nuo M, Bou S, Liu D (2016) Expression of pluripotency markers in Arbas Cashmere goat hair follicle stem cells. Vitro Cell Dev Biol Anim 52(7):782–788.  https://doi.org/10.1007/s11626-016-0023-3CrossRefGoogle Scholar
  19. He Z, Lu R, Zhang T, Jiang L, Zhou M, Wu D, Cheng Y (2018) A novel recombinant human plasminogen activator: Efficient expression and hereditary stability in transgenic goats and in vitro thrombolytic bioactivity in the milk of transgenic goats. PLoS One 13(8):e0201788. https://doi.org/10.1371/journal.pone.0201788 (eCollection 2018)CrossRefGoogle Scholar
  20. Keefer CL, Keyston R, Lazaris A, Bhatia B, Begin I, Bilodeau AS, Zhou FJ, Kafidi N, Wang B, Baldassarre H, Karatzas CN (2002) Production of cloned goats after nuclear transfer using adult somatic cells. Biol Reprod 66(1):199–203CrossRefGoogle Scholar
  21. Kumar K, Agarwal P, Das K, Mili B, Madhusoodan AP, Kumar A, Bag S (2016) Isolation and characterization of mesenchymal stem cells from caprine umbilical cord tissue matrix. Tissue Cell 48(6):653–658.  https://doi.org/10.1016/j.tice.2016.06.004CrossRefPubMedGoogle Scholar
  22. Maga EA, Shoemaker CF, Rowe JD, Bondurant RH, Anderson GB, Murray JD (2006) Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland. J Dairy Sci 89(2):518–524CrossRefGoogle Scholar
  23. Mao T, Han C, Deng R, Wei B, Meng P, Luo Y, Zhang Y (2018) Treating donor cells with 2-PCPA corrects aberrant histone H3K4 dimethylation and improves cloned goat embryo development. Syst Biol Reprod Med 64(3):174–182.  https://doi.org/10.1080/19396368.2018.1446229CrossRefPubMedGoogle Scholar
  24. Melican D, Gavin W (2008) Repeat superovulation, non-surgical embryo recovery, and surgical embryo transfer in transgenic dairy goats. Theriogenology 69(2):197–203CrossRefGoogle Scholar
  25. Morand-Fehr P, Boutonnet JP, Devendra C, Dubeuf JP, Haenlein GFW, Holst P, Mowlem L, Caote J (2004) Strategy for goat farming in the 21st century. Small Rumin Res 51(2):175–183. https://doi.org/10.1016/j.smallrumres.2003.08.013CrossRefGoogle Scholar
  26. Parrilla I, Vazquez JM, Roca J, Martinez EA (2004) Flow cytometry identification of X- and Y-chromosome-bearing goat spermatozoa. Reprod Domest Anim 39(1):58–60CrossRefGoogle Scholar
  27. Pratheesh MD, Dubey PK, Gade NE, Nath A, Sivanarayanan TB, Madhu DN, Somal A, Baiju I, Sreekumar TR, Gleeja VL, Bhatt IA, Chandra V, Amarpal Sharma B, Saikumar G, Taru Sharma G (2017) Comparative study on characterization and wound healing potential of goat (Capra hircus) mesenchymal stem cells derived from fetal origin amniotic fluid and adult bone marrow. Res Vet Sci 112:81–88.  https://doi.org/10.1016/j.rvsc.2016.12.009CrossRefPubMedGoogle Scholar
  28. Qin Y, Yang S, Xu J, Xia C, Li X, An L, Tian J (2018) Deep insemination with sex-sorted Cashmere goat sperm processed in the presence of antioxidants. Reprod Domest Anim 53(1):11–19.  https://doi.org/10.1111/rda.13045CrossRefPubMedGoogle Scholar
  29. Reggio BC, James AN, Green HL, Gavin WG, Behboodi E, Echelard Y, Godke RA (2001) Cloned transgenic offspring resulting from somatic cell nuclear transfer in the goat: oocytes derived from both follicle-stimulating hormone-stimulated and nonstimulated abattoir-derived ovaries. Biol Reprod 65(5):1528–1533CrossRefGoogle Scholar
  30. Saipin N, Noophun J, Chumyim P, Rungsiwiwut R (2018) Goat milk: non-invasive source for mammary epithelial cell isolation and in vitro culture. Anat Histol Embryol 47(3):187–194.  https://doi.org/10.1111/ahe.12339CrossRefPubMedGoogle Scholar
  31. Salmon VM, Leclerc P, Bailey JL (2017) Novel technical strategies to optimize cryopreservation of goat semen using cholesterol-loaded cyclodextrin. Cryobiology 74:19–24.  https://doi.org/10.1016/j.cryobiol.2016.12.010CrossRefPubMedGoogle Scholar
  32. Sandmaier SE, Nandal A, Powell A, Garrett W, Blomberg L, Donovan DM, Talbot N, Telugu BP (2015) Generation of induced pluripotent stem cells from domestic goats. Mol Reprod Dev 82(9):709–721.  https://doi.org/10.1002/mrd.22512CrossRefPubMedPubMedCentralGoogle Scholar
  33. Silanikove N (2000) Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest Prod Sci 67:1–18CrossRefGoogle Scholar
  34. Smith V (2006) Food fit for the soul of a Pharaoh. The Mortuary temple’s bakeries and breweries. Expedition 48:27–30Google Scholar
  35. Traldi AS, Leboeuf B, Cognié Y, Poulin N, Mermillod P (1999) Comparative results of in vitro and in vivo survival of vitrified in vitro produced goat and sheep embryos. Theriogenology 51(1):175CrossRefGoogle Scholar
  36. Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, Dong Z, Niu Y, Shi B, Cai B, Liu J, Huang S, Yan H, Zhao X, Zhou G, He X, Chen X, Yang Y, Jiang Y, Shi L, Tian X, Wang Y, Ma B, Huang X, Qu L, Chen Y (2015) Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep 10(5):13878.  https://doi.org/10.1038/srep13878CrossRefGoogle Scholar
  37. Wang X, Niu Y, Zhou J, Zhu H, Ma B, Yu H, Yan H, Hua J, Huang X, Qu L, Chen Y (2018) CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass. Anim Genet 49(1):43–51.  https://doi.org/10.1111/age.12626CrossRefPubMedGoogle Scholar
  38. Yu H, Chen J, Liu S, Zhang A, Xu X, Wang X, Lu P, Cheng G (2013) Large-scale production of functional human lysozyme in transgenic cloned goats. J Biotechnol. pii: S0168-1656(13)00456-2.  https://doi.org/10.1016/j.jbiotec.2013.10.023CrossRefGoogle Scholar
  39. Yu B, Lu R, Yuan Y, Zhang T, Song S, Qi Z, Shao B, Zhu M, Mi F, Cheng Y (2016) Efficient TALEN-mediated myostatin gene editing in goats. BMC Dev Biol 16(1):26.  https://doi.org/10.1186/s12861-016-0126-9CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zhou ZR, Zhong BS, Jia RX, Wan YJ, Zhang YL, Fan YX, Wang LZ, You JH, Wang ZY, Wang F (2013) Production of myostatin-targeted goat by nuclear transfer from cultured adult somatic cells. Theriogenology 79(2):225–233.  https://doi.org/10.1016/j.theriogenology.2012.08.006CrossRefPubMedGoogle Scholar
  41. Zhou W, Wan Y, Guo R, Deng M, Deng K, Wang Z, Zhang Y, Wang F (2017) Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS ONE 12(10):e0186056.  https://doi.org/10.1371/journal.pone.0186056 (eCollection 2017) CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zhu H, Hu L, Liu J, Chen H, Cui C, Song Y, Jin Y, Zhang Y (2016) Generation of β-lactoglobulin-modified transgenic goats by homologous recombination. FEBS J 283(24):4600–4613.  https://doi.org/10.1111/febs.13950CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations