Advertisement

Transgenic Fish

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 555 Downloads

Abstract

Fish is an important component of revenue and nutrition to millions of people. In current scenario, when demand and cost of producing land-based animal protein are increasing, the fish can complement the requirement of proteins. Reducing operating costs, minimal ecological pollution, and generating income are the prime objectives of fish production in controlled environment. Genetically engineered fish offers not only increased growth, but also serve as system to produce therapeutics and nutraceuticals.

Key Points
  • Fish is a valued source of essential nutrients, viz. proteins, vitamins, and minerals

  • The genetic engineering tools developed for other animals are used to develop transgenic fish to boost aquaculture production.

Keywords

Fish Genetic engineering Transgenesis Therapeutics Nutraceuticals 

References

  1. Alam MA, Rahman SM, Yamamoto Y, Hattori RS, Suzuki T, Watanabe M, Strüssmann CA (2018) Optimization of protocols for microinjection-based delivery of cryoprotective agents into Japanese whiting Sillago japonica embryos. Cryobiology. pii: S0011-2240(18)30202-5.  https://doi.org/10.1016/j.cryobiol.2018.10.007 (Epub ahead of print)PubMedCrossRefGoogle Scholar
  2. Alzaid A, Kim JH, Devlin RH, Martin SAM, Macqueen DJ (2018) Growth hormone transgenesis in coho salmon disrupts muscle immune function impacting cross-talk with growth systems. J Exp Biol 221(Pt 13). pii: jeb173146.  https://doi.org/10.1242/jeb.173146PubMedCrossRefGoogle Scholar
  3. Bayer TA, Campos-Ortega JA (1992) A transgene containing lacZ is expressed in primary sensory neurons in zebrafish. Development. 115(2):421–426PubMedGoogle Scholar
  4. Causey DR, Kim JH, Stead DA, Martin SAM, Devlin RH, Macqueen DJ (2018) Proteomic comparison of selective breeding and growth hormone transgenesis in fish: unique pathways to enhanced growth. J Proteomics. pii: S1874-3919(18)30325-7.  https://doi.org/10.1016/j.jprot.2018.08.013 (Epub ahead of print)PubMedCrossRefGoogle Scholar
  5. Chitramuthu BP, Bennett HPJ (2018) Application of zebrafish and knockdown technology to define progranulin neuronal function. Methods Mol Biol 1806:207–231.  https://doi.org/10.1007/978-1-4939-8559-3_15PubMedCrossRefGoogle Scholar
  6. Chong SS, Vielkind JR (1989) Expression and fate of CAT reporter gene microinjected into fertilized medaka (Oryzias latipes) eggs in the form of plasmid DNA, recombinant phage particles and its DNA. Theor Appl Genet 78(3):369–380.  https://doi.org/10.1007/BF00265299PubMedCrossRefGoogle Scholar
  7. Chourrout D (1986) Techniques of chromosome manipulation in rainbow trout: a new evaluation with karyology. Theor Appl Genet 72(5):627–632.  https://doi.org/10.1007/BF00289000PubMedCrossRefGoogle Scholar
  8. Collins C, Lorenzen N, Collet B (2018) DNA vaccination for finfish aquaculture. Fish Shellfish Immunol. pii: S1050-4648(18)30410-8.  https://doi.org/10.1016/j.fsi.2018.07.012 (Epub ahead of print)CrossRefGoogle Scholar
  9. Cui J, Sim TH, Gong Z, Shen HM (2012) Generation of transgenic zebrafish with liver-specific expression of EGFP-Lc3: a new in vivo model for investigation of liver autophagy. Biochem Biophys Res Commun 422(2):268–273.  https://doi.org/10.1016/j.bbrc.2012.04.145 (Epub 2012 May 3)PubMedCrossRefGoogle Scholar
  10. Dempsey WP, Fraser SE, Pantazis P (2012) PhOTO zebrafish: a transgenic resource for in vivo lineage tracing during development and regeneration. PLoS ONE 7(3):e32888.  https://doi.org/10.1371/journal.pone.0032888 (Epub 2012 Mar 14)PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dersjant-Li Y, Awati A, Schulze H, Partridge G (2015) Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agric 95(5):878–896.  https://doi.org/10.1002/jsfa.6998 (Epub 2014 Dec 19. Review)PubMedPubMedCentralCrossRefGoogle Scholar
  12. Devlin RH, Yesaki TY, Biagi CA, Donaldson EM, Swanson P, Chan W-K (1994) Extraordinary salmon growth. Nature 371:209–210CrossRefGoogle Scholar
  13. Du SJ, Gong ZY, Fletcher GL, Shears MA, King MJ, Idler DR, Hew CL (1992) Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. Biotechnology (N Y) 10(2):176–181Google Scholar
  14. Dunham RA, Eash J, Askins J, Townes TM (1987) Transfer of the metallothioneinhuman growth hormone fusion gene into channel catfish. Trans Am Fish Soc 116:87–91CrossRefGoogle Scholar
  15. Dunham RA, Elaswad A, Qin Z (2018) Gene editing in channel catfish via double electroporation of zinc-finger nucleases. Methods Mol Biol 1867:201–214.  https://doi.org/10.1007/978-1-4939-8799-3_15PubMedCrossRefGoogle Scholar
  16. Elaswad A, Khalil K, Cline D, Page-McCaw P, Chen W, Michel M, Cone R, Dunham R (2018) Microinjection of CRISPR/Cas9 protein into channel catfish, Ictalurus punctatus, embryos for gene editing. J Vis Exp 131.  https://doi.org/10.3791/56275
  17. Fang J, Chen T, Pan Q, Wang Q (2018) Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9. J Exp Zool B Mol Dev Evol 330(4):242–246.  https://doi.org/10.1002/jez.b.22808 (Epub 2018 Jun 5)PubMedCrossRefGoogle Scholar
  18. Gong Z, Hew CL (1995) Transgenic fish in aquaculture and developmental biology. Curr Top Dev Biol 30:177–214 (Review. No abstract available)PubMedCrossRefGoogle Scholar
  19. Hew CL, Davies PL, Fletcher G (1992) Antifreeze protein gene transfer in Atlantic salmon. Mol Mar Biol Biotechnol 1(4–5):309–317PubMedGoogle Scholar
  20. Hill JA, Kiessling A, Devlin RH (2000) Coho salmon (Oncorhynchus kisutch) transgenic for a growth hormone gene construct exhibit increased rates of muscle hyperplasia and detectable levels of differential gene expression. Can J Fish Aquat Sci 57:939–950CrossRefGoogle Scholar
  21. Hobbs RS, Fletcher GL (2008) Tissue specific expression of antifreeze protein and growth hormone transgenes driven by the ocean pout (Macrozoarces americanus) antifreeze protein OP5a gene promoter in Atlantic salmon (Salmo salar). Transgenic Res 17(1):33–45 (Epub 2007 Sep 2)PubMedCrossRefGoogle Scholar
  22. Hostetler HA, Collodi P, Devlin RH, Muir WM (2005) Improved phytate phosphorus utilization by Japanese medaka transgenic for the Aspergillus niger phytase gene. Zebrafish 2(1):19–31.  https://doi.org/10.1089/zeb.2005.2.19PubMedCrossRefGoogle Scholar
  23. Hsieh JC, Pan CY, Chen JY (2010) Tilapia hepcidin (TH)2-3 as a transgene in transgenic fish enhances resistance to Vibrio vulnificus infection and causes variations in immune-related genes after infection by different bacterial species. Fish Shellfish Immunol 29(3):430–439.  https://doi.org/10.1016/j.fsi.2010.05.001 (Epub 2010 May 12)PubMedCrossRefGoogle Scholar
  24. Inoue K, Yamashita S, Hata J, Kabeno S, Asada S, Nagahisa E (1990) Fujita T electroporation as a new technique for producing transgenic fish. Cell Differ Dev 29(2):123–128PubMedCrossRefGoogle Scholar
  25. Kawasaki T, Saito K, Sakai C, Shinya M, Sakai N (2012) Production of zebrafish offspring from cultured spermatogonial stem cells. Genes Cells 17(4):316–325.  https://doi.org/10.1111/j.1365-2443.2012.01589.x (Epub 2012 Mar 5)PubMedCrossRefGoogle Scholar
  26. Kawasaki T, Siegfried KR, Sakai N (2016) Differentiation of zebrafish spermatogonial stem cells to functional sperm in culture. Development. 143(4):566–574.  https://doi.org/10.1242/dev.129643 (Epub 2015 Dec 30)PubMedCrossRefGoogle Scholar
  27. Koga A, Cheah FS, Hamaguchi S, Yeo GH, Chong SS (2008) Germline transgenesis of zebrafish using the medaka Tol1 transposon system. Dev Dyn 237(9):2466–2474.  https://doi.org/10.1002/dvdy.21688PubMedCrossRefGoogle Scholar
  28. Kumar M, Yadav AK, Verma V, Singh B, Mal G, Nagpal R, Hemalatha R (2016) Bioengineered probiotics as a new hope for health and diseases: an overview of potential and prospects. Future Microbiol 11(4):585–600.  https://doi.org/10.2217/fmb.16.4 (Epub 2016 Apr 12. Review)PubMedCrossRefGoogle Scholar
  29. Lacerda SM, Costa GM, de França LR (2014) Biology and identity of fish spermatogonial stem cell. Gen Comp Endocrinol 1(207):56–65.  https://doi.org/10.1016/j.ygcen.2014.06.018 (Epub 2014 Jun 23)CrossRefGoogle Scholar
  30. Lee SW, Wu G, Choi NY, Lee HJ, Bang JS, Lee Y, Lee M, Ko K, Schöler HR, Ko K (2018) Self-reprogramming of spermatogonial stem cells into pluripotent stem cells without microenvironment of feeder cells. Mol Cells 41(7):631–638.  https://doi.org/10.14348/molcells.2018.2294 (Epub 2018 Jul 10) PubMedPubMedCentralCrossRefGoogle Scholar
  31. Mori T, Hiraka I, Kurata Y, Kawachi H, Mano N, Devlin RH, Nagoya H, Araki K (2007) Changes in hepatic gene expression related to innate immunity, growth and iron metabolism in GH-transgenic amago salmon (Oncorhynchus masou) by cDNA subtraction and microarray analysis, and serum lysozyme activity. Gen Comp Endocrinol 151(1):42–54 (Epub 2007 Jan 12)PubMedCrossRefGoogle Scholar
  32. Muir WM, Howard RD (1999) Possible ecological risks of transgenic organism release when transgenes affect mating success: sexual selection and the Trojan gene hypothesis. Proc Natl Acad Sci U S A 96(24):13853–13856PubMedPubMedCentralCrossRefGoogle Scholar
  33. Nayak S, Ferosekhan S, Sahoo SK, Sundaray JK, Jayasankar P, Barman HK (2016) Production of fertile sperm from in vitro propagating enriched spermatogonial stem cells of farmed catfish. Clarias batrachus. Zygote 24(6):814–824 (Epub 2016 Jul 15)PubMedCrossRefGoogle Scholar
  34. Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300(5893):611–615PubMedPubMedCentralCrossRefGoogle Scholar
  35. Patra SK, Chakrapani V, Panda RP, Mohapatra C, Jayasankar P, Barman HK (2015) First evidence of molecular characterization of rohu carp Sox2 gene being expressed in proliferating spermatogonial cells. Theriogenology 84(2):268–276.e1.  https://doi.org/10.1016/j.theriogenology.2015.03.017 (Epub 2015 Mar 25)PubMedCrossRefGoogle Scholar
  36. Patra SK, Vemulawada C, Soren MM, Sundaray JK, Panda MK, Barman HK (2018) Molecular characterization and expression patterns of Nanog gene validating its involvement in the embryonic development and maintenance of spermatogonial stem cells of farmed carp, Labeo rohita. J Anim Sci Biotechnol 9:45.  https://doi.org/10.1186/s40104-018-0260-2 (eCollection 2018)PubMedPubMedCentralCrossRefGoogle Scholar
  37. Powers DA, Hereford L, Cole T, Chen TT, Lin CM, Kight K, Creech K, Dunham R (1992) Electroporation: a method for transferring genes into the gametes of zebrafish (Brachydanio rerio), channel catfish (Ictalurus punctatus), and common carp (Cyprinus carpio). Mol Mar Biol Biotechnol 1(4–5):301–308PubMedGoogle Scholar
  38. Powers DA, Kirby VL, Cole T, Hereford L (1995) Electroporation as an effective means of introducing DNA into abalone (Haliotis rufescens) embryos. Mol Mar Biol Biotechnol 4(4):369–375PubMedGoogle Scholar
  39. Qin C, Xie Y, Wang Y, Li S, Ran C, He S, Zhou Z (2018) Impact of Lactobacillus casei BL23 on the host transcriptome, growth and disease resistance in larval zebrafish. Front Physiol 9:1245.  https://doi.org/10.3389/fphys.2018.01245 (eCollection 2018)PubMedPubMedCentralCrossRefGoogle Scholar
  40. Singh B, Mal G, Marotta F (2017) Designer probiotics: paving the way to living therapeutics. Trends Biotechnol 35(8):679–682.  https://doi.org/10.1016/j.tibtech.2017.04.001 (Epub 2017 May 5)PubMedCrossRefGoogle Scholar
  41. Su BC, Lai YW, Chen JY, Pan CY (2018) Transgenic expression of tilapia piscidin 3 (TP3) in zebrafish confers resistance to Streptococcus agalactiae. Fish Shellfish Immunol 74:235–241.  https://doi.org/10.1016/j.fsi.2018.01.001 (Epub 2018 Jan 6)PubMedCrossRefGoogle Scholar
  42. Tonelli FMP, Lacerda SMSN, Tonelli FCP, Costa GMJ, de França LR, Resende RR (2017) Progress and biotechnological prospects in fish transgenesis. Biotechnol Adv. 35(6):832–844.  https://doi.org/10.1016/j.biotechadv.2017.06.002 (Epub 2017 Jun 8. Review)PubMedCrossRefGoogle Scholar
  43. Vílchez MC, Santangeli S, Maradonna F, Gioacchini G, Verdenelli C, Gallego V, Peñaranda DS, Tveiten H, Pérez L, Carnevali O, Asturiano JF (2015) Effect of the probiotic Lactobacillus rhamnosus on the expression of genes involved in European eel spermatogenesis. Theriogenology 84(8):1321–1331.  https://doi.org/10.1016/j.theriogenology.2015.07.011 (Epub 2015 Jul 17)PubMedCrossRefGoogle Scholar
  44. Wang R, Zhang P, Gong Z, Hew CL (1995) Expression of the antifreeze protein gene in transgenic goldfish (Carassius auratus) and its implication in cold adaptation. Mol Mar Biol Biotechnol 4(1):20–26PubMedGoogle Scholar
  45. Watakabe I, Hashimoto H, Kimura Y, Yokoi S, Naruse K, Higashijima SI (2018) Highly efficient generation of knock-in transgenic medaka by CRISPR/Cas9-mediated genome engineering. Zoological Lett 4:3.  https://doi.org/10.1186/s40851-017-0086-3 (eCollection 2018)PubMedPubMedCentralCrossRefGoogle Scholar
  46. Wong TK, Neumann E (1982) Electric field mediated gene transfer. Biochem Biophys Res Commun 107(2):584–587 (No abstract available)PubMedCrossRefGoogle Scholar
  47. Woo PT (2007) Protective immunity in fish against protozoan diseases. Parassitologia 49(3):185–191 (Review)PubMedGoogle Scholar
  48. Yaskowiak ES, Shears MA, Agarwal-Mawal A, Fletcher GL (2006) Characterization and multi-generational stability of the growth hormone transgene (EO-1alpha) responsible for enhanced growth rates in Atlantic salmon. Transgenic Res 15(4):465–480 (Erratum in Transgenic Res. 2007 Apr; 16(2):253–259)PubMedCrossRefGoogle Scholar
  49. Zhang PJ, Hayat M, Joyce C, Gonzalez-Villaseñor LI, Lin CM, Dunham RA, Chen TT, Powers DA (1990) Gene transfer, expression and inheritance of pRSV-rainbow trout-GH cDNA in the common carp, Cyprinus carpio (Linnaeus). Mol Reprod Dev 25(1):3–13PubMedCrossRefGoogle Scholar
  50. Zhong Z, Niu P, Wang M, Huang G, Xu S, Sun Y, Xu X, Hou Y, Sun X, Yan Y, Wang H (2016) Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci Rep 15(6):22953.  https://doi.org/10.1038/srep22953CrossRefGoogle Scholar
  51. Zhu Z, Li G, He L, Chen S (1985) Novel gene transfer into the fertilized eggs of goldfish (Carassius auratus L. 1758). Z Angew Ichthyol 1:31–34CrossRefGoogle Scholar
  52. Zhu XY, Wu SQ, Guo SY, Yang H, Xia B, Li P, Li CQ (2018) A zebrafish heart failure model for assessing therapeutic agents. Zebrafish 15(3):243–253.  https://doi.org/10.1089/zeb.2017.1546 (Epub 2018 Mar 20)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations