Advertisement

Animal Stem Cells—A Perspective on Their Use in Human Health

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 533 Downloads

Abstract

Stem cells have sparked a revolution in biomedical and veterinary medicine. The past two decades have witnessed astounding innovations in pursuit of stem cell applications in livestock production and health. Stem cells are reported from various domestic animals. The stem cells in livestock species are important candidates for genomic testing, selection, genome engineering, and developing model animals for investigating human diseases. Mesenchymal stem cells, due to the ease of attainment, pluripotency, and better proliferation activity have emerged as clinically important cells for treating injuries in pet and companion animals. Improved cell culture techniques, culture media, and supplements, insights into gene-environmental interactions may solve current bottlenecks associated with segregation, description, and applications of stem cells in livestock.

Highlights
  • Stem cell technology is an important branch of animal reproduction and health sciences

  • Animal stem cells serve to enhance reproduction engineering and cell-based therapies.

Keywords

Stem cell types Embryonic stem cells Mesenchymal stem cells Livestock species Stem cell therapeutics 

References

  1. Arato I, Luca G, Mancuso F, Bellucci C, Lilli C, Calvitti M, Hansen BC, Milardi D, Grande G, Calafiore R (2018) An in vitro prototype of a porcine biomimetic testis-like cell culture system: a novel tool for the study of reassembled Sertoli and Leydig cells. Asian J Androl 20(2):160–165.  https://doi.org/10.4103/aja.ja_47_17CrossRefPubMedGoogle Scholar
  2. Arrizabalaga JH, Nollert MU (2017) Properties of porcine adipose-derived stem cells and their applications in preclinical models. Adipocyte 6(3):217–223.  https://doi.org/10.1080/21623945.2017.1312040 (Epub 2017 Mar 30. Review)CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arzi B, Clark KC, Sundaram A, Spriet M, Verstraete FJM, Walker NJ, Loscar MR, Fazel N, Murphy WJ, Vapniarsky N, Borjesson DL (2017) Therapeutic efficacy of fresh, allogeneic mesenchymal stem cells for severe refractory feline chronic gingivostomatitis. Stem Cells Transl Med 6(8):1710–1722.  https://doi.org/10.1002/sctm.17-0035 (Epub 2017 Jun 15)CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhartiya D, James K (2017) Very small embryonic-like stem cells (VSELs) in adult mouse uterine perimetrium and myometrium. J Ovarian Res 10(1):29.  https://doi.org/10.1186/s13048-017-0324-5CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S, Unni S (2016) Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 23(1):41–76 (Epub 2016 Sep 10. Review)CrossRefGoogle Scholar
  6. Bhat IA, T B S, Somal A, Pandey S, Bharti MK, Panda BSK, B I, Verma M, J A, Sonwane A, Kumar GS, Amarpal, Chandra V, Sharma GT (2018) An allogenic therapeutic strategy for canine spinal cord injury using mesenchymal stem cells. J Cell Physiol.  https://doi.org/10.1002/jcp.27086CrossRefGoogle Scholar
  7. Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA, Zhong C, Sakurai M, Sampaio RV, Suzuki K, Izpisua Belmonte JC, Ross PJ (2018) Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc Natl Acad Sci U S A 115(9):2090–2095.  https://doi.org/10.1073/pnas.1716161115 (Epub 2018 Feb 9)CrossRefPubMedPubMedCentralGoogle Scholar
  8. Breton A, Sharma R, Diaz AC, Parham AG, Graham A, Neil C, Whitelaw CB, Milne E, Donadeu FX (2013) Derivation and characterization of induced pluripotent stem cells from equine fibroblasts. Stem Cells Dev 22(4):611–621.  https://doi.org/10.1089/scd.2012.0052 (Epub 2012 Sep 28)CrossRefPubMedGoogle Scholar
  9. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, de Sousa Chuva, Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448(7150):191–195 (Epub 2007 Jun 27)CrossRefGoogle Scholar
  10. Cao S, Wang F, Chen Z, Liu Z, Mei C, Wu H, Huang J, Li C, Zhou L, Liu L (2009) Isolation and culture of primary bovine embryonic stem cell colonies by novel method. J Exp Zool A Ecol Genet Physiol 311:368–376CrossRefGoogle Scholar
  11. Capuco AV, Choudhary RK, Daniels KM, Li RW, Evock-Clover CM (2012) Bovine mammary stem cells: cell biology meets production agriculture. Animal 6(3):382–393.  https://doi.org/10.1017/S1751731111002369 (Review)CrossRefPubMedGoogle Scholar
  12. Chang LB, Peng SY, Chou CJ, Chen YJ, Shiu JS, Tu PA, Gao SX, Chen YC, Lin TK, Wu SC (2018) Therapeutic potential of amniotic fluid stem cells to treat bilateral ovarian dystrophy in dairy cows in a subtropical region. Reprod Domest Anim 53(2):433–441.  https://doi.org/10.1111/rda.13123 (Epub 2017 Dec 14. Erratum in: Reprod Domest Anim. 2018 Aug; 53(4):1024)CrossRefPubMedGoogle Scholar
  13. Charepalli V, Reddivari L, Radhakrishnan S, Eriksson E, Xiao X, Kim SW, Shen F, Vijay-Kumar M, Li Q, Bhat VB, Knight R, Vanamala JKP (2017) Pigs, unlike mice, have two distinct colonic stem cell populations similar to humans that respond to high-calorie diet prior to insulin resistance. Cancer Prev Res (Phila) 10(8):442–450.  https://doi.org/10.1158/1940-6207.CAPR-17-0010 (Epub 2017 Jun 2)CrossRefGoogle Scholar
  14. Chen H, Ge RS, Zirkin BR (2009) Leydig cells: from stem cells to aging. Mol Cell Endocrinol 306(1–2):9–16.  https://doi.org/10.1016/j.mce.2009.01.023 (Epub 2009 Feb 7. Review)CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de León FA, Robl JM (1998) Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat Biotechnol 16(7):642–646 CrossRefGoogle Scholar
  16. Clark KC, Fierro FA, Ko EM, Walker NJ, Arzi B, Tepper CG, Dahlenburg H, Cicchetto A, Kol A, Marsh L, Murphy WJ, Fazel N, Borjesson DL (2017) Human and feline adipose-derived mesenchymal stem cells have comparable phenotype, immunomodulatory functions, and transcriptome. Stem Cell Res Ther 8(1):69. https://doi.org/10.1186/s13287-017-0528-z
  17. Conrad S, Weber K, Walliser U, Geburek F, Skutella T (2018) Stem cell therapy for tendon regeneration: current status and future directions. Adv Exp Med Biol.  https://doi.org/10.1007/5584_2018_194 (Epub ahead of print)Google Scholar
  18. Cui Z, Li C, Jiang N, Zhang C, Wang Y, Gao H, Zhou Y (2018) Isolation and characterization of minipig perivascular stem cells for bone tissue engineering. Mol Med Rep 18(4):3555–3562.  https://doi.org/10.3892/mmr.2018.9410 (Epub 2018 Aug 21)CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cyranoski D (2019) Japan’s approval of stem-cell treatment for spinal-cord injury concerns scientists. Nature 565(7741):544–545.  https://doi.org/10.1038/d41586-019-00178-x (No abstract available)CrossRefPubMedGoogle Scholar
  20. Deng Y, Liu Q, Luo C, Chen S, Li X, Wang C, Liu Z, Lei X, Zhang H, Sun H, Lu F, Jiang J, Shi D (2012) Generation of induced pluripotent stem cells from buffalo (Bubalus bubalis) fetal fibroblasts with buffalo defined factors. Stem Cells Dev 21:2484–2495CrossRefGoogle Scholar
  21. Dev K, Giri SK, Kumar A, Yadav A, Singh B, Gautam SK (2012a) Derivation, characterization and differentiation of buffalo (Bubalus bubalis) amniotic fluid derived stem cells. Reprod Domest Anim 47:704–711. https://doi.org/10.1111/j.1439-0531.2011.01947.xCrossRefGoogle Scholar
  22. Dev K, Giri SK, Kumar A, Yadav A, Singh B, Gautam SK (2012b) Expression of transcriptional factor genes (Oct-4, Nanog, and Sox-2) and embryonic stem cell-like characters in placental membrane of buffalo (Bubalus bubalis). J Membr Biol 245(4):177–183.  https://doi.org/10.1007/s00232-012-9427-5 (Epub 2012 Apr 22)CrossRefPubMedGoogle Scholar
  23. Dolin CD, Chan MK, Basch RS, Young BK (2018) Human term amniotic fluid: a novel source of stem cells for regenerative medicine. Am J Obstet Gynecol 219(3):308–309.  https://doi.org/10.1016/j.ajog.2018.05.035 (Epub 2018 Jun 2. No abstract available)CrossRefPubMedGoogle Scholar
  24. Dutton AQ, Choong PF, Goh JC, Lee EH, Hui JH (2010) Enhancement of miniscale repair in the avascular zone using mesenchymal stem cells in a porcine model. J Bone Joint Surg Br 92:169–175CrossRefGoogle Scholar
  25. Dyce PW, Wen L, Li J (2006) In vitro germline potential of stem cells derived from foetal porcine skin. Nat Cell Biol 8:384–390CrossRefGoogle Scholar
  26. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotent cells from mouse embryos. Nature 292:154–156CrossRefGoogle Scholar
  27. Evans MJ, Notarianni E, Laurie S, Moor RM (1990) Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology 33:125–128CrossRefGoogle Scholar
  28. Faast R, Harrison SJ, Beebe LF, McIlfatrick SM, Ashman RJ, Nottle MB (2006) Use of adult mesenchymal stem cells isolated from bone marrow and blood for somatic cell nuclear transfer in pigs. Cloning Stem Cells 8(3):166–173CrossRefGoogle Scholar
  29. Forest MG (1983) Role of androgens in foetal and pubertal development. Horm Res 18:69–83CrossRefGoogle Scholar
  30. Fujihara M, Kim SM, Minami N, Yamada M, Imai H (2011) Characterization and in vitro culture of male germ cells from developing bovine testis. J Reprod Dev 57:355–364CrossRefGoogle Scholar
  31. Galli C, Lazzari G (2008) The manipulation of gametes and embryos in farm animals. Reprod Domest Anim 43(Suppl 2):1–7CrossRefGoogle Scholar
  32. Gugjoo MB, Amarpal, Chandra V, Wani MY, Dhama K, Sharma GT (2018) Mesenchymal stem cell research in veterinary medicine. Curr Stem Cell Res Ther.  https://doi.org/10.2174/1574888x13666180517074444CrossRefGoogle Scholar
  33. Harding J, Roberts RM, Mirochnitchenko O (2013) Large animal models for stem cell therapy. Stem Cell Res Ther 4(2):23.  https://doi.org/10.1186/scrt171 (Review)CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hayashi K, Hikabe O, Obata Y, Hirao Y (2017) Reconstitution of mouse oogenesis in a dish from pluripotent stem cells. Nat Protoc 12(9):1733–1744.  https://doi.org/10.1038/nprot.2017.070 (Epub 2017 Aug 10)CrossRefPubMedGoogle Scholar
  35. Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M, Hayashi K (2016) Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539(7628):299–303.  https://doi.org/10.1038/nature20104 (Epub 2016 Oct 17)CrossRefPubMedGoogle Scholar
  36. Huang B, Xie TS, Shi DS, Li T, Wang XL, Mo Y, Wang ZQ, Li MM (2007) Isolation and characterization of EG-like cells from Chinese swamp buffalo (Bubalus bubalis). Cell Biol Int 31(10):1079–1088 (Epub 2007 Mar 19)CrossRefGoogle Scholar
  37. Huang B, Li T, Wang XL, Xie TS, Lu YQ, da Silva FM, Shi DS (2010) Generation and characterization of embryonic stem-like cell lines derived from in vitro fertilization buffalo (Bubalus bubalis) embryos. Reprod Domest Anim 45(1):122–128.  https://doi.org/10.1111/j.1439-0531.2008.01268.x (Epub 2008 Dec 22) CrossRefPubMedGoogle Scholar
  38. Huang B, Li T, Alonso-Gonzalez L, Gorre R, Keatley S, Green A, Turner P, Kallingappa PK, Verma V, Oback B (2011) A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS One 6(9):e24501.  https://doi.org/10.1371/journal.pone.0024501 (Epub 2011 Sep 2)CrossRefPubMedPubMedCentralGoogle Scholar
  39. Huang X, Han X, Uyunbilig B, Zhang M, Duo S, Zuo Y, Zhao Y, Yun T, Tai D, Wang C, Li J, Li X, Li R (2014) Establishment of bovine trophoblast stem-like cells from in vitro-produced blastocyst-stage embryos using two inhibitors. Stem Cells Dev 23(13):1501–1514.  https://doi.org/10.1089/scd.2013.0329 (Epub 2014 Apr 10)CrossRefPubMedGoogle Scholar
  40. Iwasaki S, Campbell KH, Galli C, Akiyama K (2000) Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biol Reprod 62(2):470–475CrossRefGoogle Scholar
  41. Jang HJ, Kim JS, Choi HW, Jeon I, Choi S, Kim MJ, Song J, Do JT (2014) Neural stem cells derived from epiblast stem cells display distinctive properties. Stem Cell Res 12(2):506–516.  https://doi.org/10.1016/j.scr.2013.12.012CrossRefPubMedGoogle Scholar
  42. Jia W, Yang W, Lei A, Gao Z, Yang C, Hua J, Huang W, Ma X, Wang H, Dou Z (2008) A caprine chimera produced by injection of embryonic germ cells into a blastocyst. Theriogenology 69(3):340–348 (Epub 2007 Nov 14)CrossRefGoogle Scholar
  43. Kawaguchi T, Cho D, Hayashi M, Tsukiyama T, Kimura K, Matsuyama S, Minami N, Yamada M, Imai H (2016) Derivation of Induced Trophoblast Cell Lines in Cattle by Doxycycline-Inducible piggyBac Vectors. PLoS One. 11(12):e0167550. https://doi.org/10.1371/journal.pone.0167550. eCollection 2016CrossRefGoogle Scholar
  44. Khatri M, Richardson LA (2018) Therapeutic potential of porcine bronchoalveolar fluid-derived mesenchymal stromal cells in a pig model of LPS-induced ALI. J Cell Physiol 233(7):5447–5457.  https://doi.org/10.1002/jcp.26397CrossRefPubMedPubMedCentralGoogle Scholar
  45. Khodadadi K, Sumer H, Pashaiasl M, Lim S, Williamson M, Verma PJ (2012) Induction of pluripotency in adult equine fibroblasts without c-MYC. Stem Cells Int 2012:429160CrossRefGoogle Scholar
  46. Kurosaka S, Sigrid E, McLaughlin KJ (2004) Pluripotent lineage definition in bovine embryos by Oct-4 transcript localization. Biol Reprod 71:1578–1582CrossRefGoogle Scholar
  47. Latos PA, Hemberger M (2016) From the stem of the placental tree: trophoblast stem cells and their progeny. Development 143(20):3650–3660 (Review)CrossRefGoogle Scholar
  48. Lee EM, Kim AY, Lee EJ, Park JK, Park SI, Cho SG, Kim HK, Kim SY, Jeong KS (2016) Generation of equine-induced pluripotent stem cells and analysis of their therapeutic potential for muscle injuries. Cell Transplant 25(11):2003–2016.  https://doi.org/10.3727/096368916X691691CrossRefPubMedGoogle Scholar
  49. Li M, Zhang D, Hou Y, Jiao L, Zheng X, Wang WH (2003) Isolation and culture of embryonic stem cells from porcine blastocysts. Mol Reprod Dev 65(4):429–434CrossRefGoogle Scholar
  50. Li X, Zhou SG, Imreh MP, Ahrlund-Richter L, Allen WR (2006) Horse embryonic stem cell lines from the proliferation of inner cell mass cells. Stem Cells Dev 15(4):523–531CrossRefGoogle Scholar
  51. Li JX, Zhang Y, Ma LB, Sun JH, Yin BY (2009) Isolation and culture of bovine mammary epithelial stem cells. J Vet Med Sci 71(1):15–19CrossRefGoogle Scholar
  52. Lin H, Lei J, Wininger D, Nguyen MT, Khanna R, Hartmann C, Yan WL, Huang SC (2003) Multilineage potential of homozygous stem cells derived from metaphase II oocytes. Stem Cells. 21(2):152–161CrossRefGoogle Scholar
  53. Liu Z, Screven R, Boxer L, Myers MJ, Devireddy LR (2018) Characterization of canine adipose-derived mesenchymal stromal/stem cells in serum-free medium. Tissue Eng Part C Methods 24(7):399–411.  https://doi.org/10.1089/ten.TEC.2017.0409 (Epub 2018 Jun 20)CrossRefPubMedGoogle Scholar
  54. Mann A, Yadav RP, Singh J, Kumar D, Singh B, Yadav PS (2013) Culture, characterization and differentiation of cells from buffalo (Bubalus bubalis) amnion. Cytotechnology 65(1):23–30.  https://doi.org/10.1007/s10616-012-9464-z (Epub 2012 Jul 21)CrossRefPubMedGoogle Scholar
  55. Martin G (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638CrossRefGoogle Scholar
  56. Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ (2002) Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol 30(8):879–886CrossRefGoogle Scholar
  57. Martinello T, Gomiero C, Perazzi A, Iacopetti I, Gemignani F, DeBenedictis GM, Ferro S, Zuin M, Martines E, Brun P, Maccatrozzo L, Chiers K, Spaas JH, Patruno M (2018) Allogeneic mesenchymal stem cells improve the wound healing process of sheep skin. BMC Vet Res 14(1):202.  https://doi.org/10.1186/s12917-018-1527-8CrossRefPubMedPubMedCentralGoogle Scholar
  58. Maruotti J, Dai XP, Brochard V, Jouneau L, Liu J, Bonnet-Garnier A, Jammes H, Vallier L, Brons IG, Pedersen R, Renard JP, Zhou Q, Jouneau A (2010) Nuclear transfer-derived epiblast stem cells are transcriptionally and epigenetically distinguishable from their fertilized-derived counterparts. Stem Cells 28(4):743–752.  https://doi.org/10.1002/stem.400CrossRefPubMedGoogle Scholar
  59. Maruotti J, Muñoz M, Degrelle SA, Gómez E, Louet C, Díez C, de Longchamp PH, Brochard V, Hue I, Caamaño JN, Jouneau A (2012) Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors. Mol Reprod Dev. 79(7):461–477.  https://doi.org/10.1002/mrd.22051 (Epub 2012 May 31. Erratum in: Mol Reprod Dev. 2012 Dec; 79(12):888. Monforte, Carmen Díez [corrected to Díez, Carmen])CrossRefPubMedGoogle Scholar
  60. Meinecke-Tillmann S, Meinecke B (1996) Isolation of ES-like cell lines from ovine and caprine preimplantation embryos. J Anim Breed Genet 113:413–426CrossRefGoogle Scholar
  61. Memon IA, Sawa Y, Miyagawa S, Taketani S, Matsuda H (2005) Combined autologous cellular cardiomyoplasty with skeletal myoblasts and bone marrow cells in canine hearts for ischemic cardiomyopathy. J Thorac Cardiovasc Surg 130(3):646–653CrossRefGoogle Scholar
  62. Nagy K, Sung HK, Zhang P, Laflamme S, Vincent P, Agha-Mohammadi S, Woltjen K, Monetti C, Michael IP, Smith LC, Nagy A (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev 7(3):693–702.  https://doi.org/10.1007/s12015-011-9239-5 (Erratum. In: Stem Cell Rev. 2012 Jun; 8(2):546)CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL (2008) Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res 69(7):928–937.  https://doi.org/10.2460/ajvr.69.7.928CrossRefPubMedGoogle Scholar
  64. Pan S, Chen W, Liu X, Xiao J, Wang Y, Liu J, Du Y, Wang Y, Zhang Y (2015) Application of a novel population of multipotent stem cells derived from skin fibroblasts as donor cells in bovine SCNT. PLoS ONE. 10(1):e0114423.  https://doi.org/10.1371/journal.pone.0114423 (eCollection 2015)CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pant D, Keefer CL (2009) Expression of pluripotency-related genes during bovine inner cell mass explant culture. Cloning Stem Cells 11(3):355–365. https://doi.org/10.1089/clo.2008.0078CrossRefGoogle Scholar
  66. Pashaiasl M, Khodadadi K, Holland MK, Verma PJ (2010) The efficient generation of cell lines from bovine parthenotes. Cell Reprogram 12(5):571–579. https://doi.org/10.1089/cell.2009.0118CrossRefGoogle Scholar
  67. Pawar SS, Malakar D, De AK, Akshey YS (2009) Stem cell-like outgrowths from in vitro fertilized goat blastocysts. Indian J Exp Biol 47(8):635–642PubMedGoogle Scholar
  68. Piedrahita JA, Anderson GB, Bondurant RH (1990) On the isolation of embryonic stem cells: comparative behavior of murine, porcine and ovine embryos. Theriogenology 34(5):879–901CrossRefGoogle Scholar
  69. Pipino C, Mandatori D, Buccella F, Lanuti P, Preziuso A, Castellani F, Grotta L, Di Tomo P, Marchetti S, Di Pietro N, Cichelli A, Pandolfi A, Martino G (2018) Identification and characterization of a stem cell-like population in bovine milk: a potential new source for regenerative medicine in veterinary. Stem Cells Dev.  https://doi.org/10.1089/scd.2018.0114 [Epub ahead of print]CrossRefGoogle Scholar
  70. Quimby JM, Borjesson DL (2018) Mesenchymal stem cell therapy in cats: Current knowledge and future potential. J Feline Med Surg 20(3):208–216.  https://doi.org/10.1177/1098612X18758590CrossRefPubMedGoogle Scholar
  71. Ribitsch I, Chang-Rodriguez S, Egerbacher M, Gabner S, Gueltekin S, Huber J, Schuster T, Jenner F (2017) Sheep placenta cotyledons: a noninvasive source of ovine mesenchymal stem cells. Tissue Eng Part C Methods 23(5):298–310.  https://doi.org/10.1089/ten.tec.2017.0067CrossRefPubMedGoogle Scholar
  72. Rielland M, Hue I, Renard JP, Alice J (2008) Trophoblast stem cell derivation, cross-species comparison and use of nuclear transfer: new tools to study trophoblast growth and differentiation. Dev Biol 322(1):1–10.  https://doi.org/10.1016/j.ydbio.2008.07.017 (Epub 2008 Jul 22. Review)CrossRefPubMedGoogle Scholar
  73. Rosselli DD, Mumaw JL, Dickerson V, Brown CA, Brown SA, Schmiedt CW (2016) Efficacy of allogeneic mesenchymal stem cell administration in a model of acute ischemic kidney injury in cats. Res Vet Sci 108:18–24.  https://doi.org/10.1016/j.rvsc.2016.07.003 (Epub 2016 Jul 5)CrossRefPubMedPubMedCentralGoogle Scholar
  74. Ruffing NA, Anderson GB, Bondurant RH, Currie WB, Pashen RL (1993) Effects of chimerism in sheep-goat concepti that developed from blastomere-aggregation embryos. Biol Reprod 48(4):889–904CrossRefGoogle Scholar
  75. Saadeldin IM, Swelum AA, Elsafadi M, Mahmood A, Alfayez M, Alowaimer AN (2018) Cumulus cells of camel (Camelus dromedarius) antral follicles are multipotent stem cells. Theriogenology 15(118):233–242.  https://doi.org/10.1016/j.theriogenology.2018.06.009 (Epub 2018 Jun 19)CrossRefGoogle Scholar
  76. Saito S, Ugai H, Sawai K, Yamamoto Y, Minamihashi A, Kurosaka K, Kobayashi Y, Murata T, Obata Y, Yokoyama K (2002) Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro. FEBS Lett 531(3):389–396CrossRefGoogle Scholar
  77. Saito S, Sawai K, Ugai H, Moriyasu S, Minamihashi A, Yamamoto Y, Hirayama H, Kageyama S, Pan J, Murata T, Kobayashi Y, Obata Y, Yokoyama KK (2003) Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochem Biophys Res Commun 309(1):104–113CrossRefGoogle Scholar
  78. Sanna D, Sanna A, Mara L, Pilichi S, Mastinu A, Chessa F, Pani L, Dattena M (2009) Oct-4 expression in in-vitro-produced sheep blastocysts and embryonic-stem-like cells. Cell Biol Int 34(1):53–60.  https://doi.org/10.1042/CBI20090008CrossRefPubMedGoogle Scholar
  79. Sasaki A, Mizuno M, Ozeki N, Katano H, Otabe K, Tsuji K, Koga H, Mochizuki M, Sekiya I (2018) Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infrapatellar fat pad, adipose tissue, and bone marrow. PLoS ONE 13(8):e0202922.  https://doi.org/10.1371/journal.pone.0202922 (eCollection 2018)CrossRefPubMedPubMedCentralGoogle Scholar
  80. Shim H, Gutiérrez-Adán A, Chen LR, BonDurant RH, Behboodi E, Anderson GB (1997) Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol Reprod 57(5):1089–1095CrossRefGoogle Scholar
  81. Shirazi R, Zarnani AH, Soleimani M, Nayernia K, Ragerdi Kashani I (2017) Differentiation of bone marrow-derived stage-specific embryonic antigen 1 positive pluripotent stem cells into male germ cells. Microsc Res Tech 80(4):430–440.  https://doi.org/10.1002/jemt.22812 (Epub 2016 Dec 19)CrossRefPubMedGoogle Scholar
  82. Song H, Li H, Huang M, Xu D, Gu C, Wang Z, Dong F, Wang F (2013) Induced pluripotent stem cells from goat fibroblasts. Mol Reprod Dev 80(12):1009–1017.  https://doi.org/10.1002/mrd.22266 (Epub 2013 Nov 27)CrossRefPubMedPubMedCentralGoogle Scholar
  83. Song H, Li H, Huang M, Xu D, Wang Z, Wang F (2016) Big animal cloning using transgenic induced pluripotent stem cells: a case study of goat transgenic induced pluripotent stem cells. Cell Reprogram 18(1):37–47.  https://doi.org/10.1089/cell.2015.0035CrossRefPubMedPubMedCentralGoogle Scholar
  84. Sritanaudomchai H, Pavasuthipaisit K, Kitiyanant Y, Kupradinun P, Mitalipov S, Kusamran T (2007) Characterization and multilineage differentiation of embryonic stem cells derived from a buffalo parthenogenetic embryo. Mol Reprod Dev 74(10):1295–1302CrossRefGoogle Scholar
  85. Stice SL, Strelchenko NS, Keefer CL, Matthews L (1996) Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer. Biol Reprod 54(1):100–110CrossRefGoogle Scholar
  86. Stingl J (2009) Detection and analysis of mammary gland stem cells. J Pathol 217(2):229–241.  https://doi.org/10.1002/path.2457 (Review)CrossRefPubMedGoogle Scholar
  87. Sultana T, Lee S, Yoon HY, Lee JI (2018) Current status of canine umbilical cord blood-derived mesenchymal stem cells in veterinarymedicine. Stem Cells Int 15(2018):8329174.  https://doi.org/10.1155/2018/8329174 (eCollection 2018. Review)CrossRefGoogle Scholar
  88. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by definedfactors. Cell 126(4):663–676 (Epub 2006 Aug 10)CrossRefGoogle Scholar
  89. Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J (1998) Promotion of trophoblast stem cell proliferation by FGF4. Science 282(5396):2072–2075CrossRefGoogle Scholar
  90. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199 (Epub 2007 Jun 27)CrossRefGoogle Scholar
  91. Textor JA, Clark KC, Walker NJ, Aristizobal FA, Kol A, LeJeune SS, Bledsoe A, Davidyan A, Gray SN, Bohannon-Worsley LK, Woolard KD, Borjesson DL (2018) Allogeneic stem cells alter gene expression and improve healing of distal limb wounds in horses. Stem Cells Transl Med 7(1):98–108.  https://doi.org/10.1002/sctm.17-0071 (Epub 2017 Oct 24)CrossRefPubMedGoogle Scholar
  92. Tripathi AK, Ramani UV, Ahir VB, Rank DN, Joshi CG (2010) A modified enrichment protocol for adult caprine skeletal muscle stem cell. Cytotechnology 62(6):483–488.  https://doi.org/10.1007/s10616-010-9306-9 (Epub 2010 Sep 24)CrossRefPubMedPubMedCentralGoogle Scholar
  93. Verma V, Gautam SK, Singh B, Manik RS, Palta P, Singla SK, Goswami SL, Chauhan MS (2007) Isolation and characterization of embryonic stem cell-like cells from in vitro-produced buffalo (Bubalus bubalis) embryos. Mol Reprod Dev 74(4):520–529CrossRefGoogle Scholar
  94. Vivas D, Caminal M, Oliver-Vila I, Vives J (2018) Derivation of multipotent mesenchymal stromal cells from ovine bone marrow. Curr Protoc Stem Cell Biol 44:2B.9.1–2B.9.22.  https://doi.org/10.1002/cpsc.43CrossRefGoogle Scholar
  95. Wang F, Wu Z, Fan Z, Wu T, Wang J, Zhang C, Wang S (2018) The cell re-association-based whole-tooth regeneration strategies in large animal, Sus scrofa. Cell Prolif 51(4):e12479.  https://doi.org/10.1111/cpr.12479 (Epub 2018 Jul 20)CrossRefPubMedGoogle Scholar
  96. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686 (Epub 2007 May 27)CrossRefGoogle Scholar
  97. Webb TL, Webb CB (2015) Stem cell therapy in cats with chronic enteropathy: a proof-of-concept study. J Feline Med Surg 17(10):901–908.  https://doi.org/10.1177/1098612X14561105 (Epub 2014 Dec 5)CrossRefPubMedGoogle Scholar
  98. Webb TL, Quimby JM, Dow SW (2012) In vitro comparison of feline bone marrow-derived and adipose tissue-derived mesenchymal stem cells. J Feline Med Surg 14(2):165–168. https://doi.org/10.1177/1098612X11429224CrossRefGoogle Scholar
  99. Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, Zhu H, Teng X, Cheng L, Xiao L (2009) Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1(1):46–54.  https://doi.org/10.1093/jmcb/mjp003 (Epub 2009 Jun 3)CrossRefPubMedPubMedCentralGoogle Scholar
  100. Wu X, Song M, Yang X, Liu X, Liu K, Jiao C, Wang J, Bai C, Su G, Liu X, Li G (2016) Establishment of bovine embryonic stem cells after knockdown of CDX2. Sci Rep 20(6):28343.  https://doi.org/10.1038/srep28343CrossRefGoogle Scholar
  101. Wu Z, Wang F, Fan Z, Wu T, He J, Wang J, Zhang C, Wang S (2019) Whole tooth regeneration by allogeneic cell reassociation in pig jawbone. Tissue Eng Part A.  https://doi.org/10.1089/ten.tea.2018.0243 (Epub ahead of print)
  102. Xie B, Qin Z, Huang B, Xie T, Yao H, Wei Y, Yang X, Shi D, Jiang H (2010) In vitro culture and differentiation and of buffalo (Bubalus bubalis) spermatogonia. Reprod Domest Anim 45:275–282CrossRefGoogle Scholar
  103. Yadav PS, Kues WA, Herrmann D, Carnwath JW, Niemann H (2005) Bovine ICM derived cells express the Oct-4 ortholog. Mol Reprod Dev 72(2):182–190CrossRefGoogle Scholar
  104. Yadav RP, Yadav PS, Nanda T, Singh I (2008a) Isolation and culture of stem cells like cells from buffalo amnion. In: First international stem cell submit-2008, held at IIT, Chennai, 14–16 Nov 2008Google Scholar
  105. Yadav PS, Tokas J, Sharma RK, Singh I, Sethi RK (2008b) Buffalo amniotic fluid, umbilical cord matrix, and early foetal explants as possible source of adult stem cells. In: IX annual conference of Indian society of animal genetics and breeding, held at NASC Complex, Delhi, July 3–4, 2008Google Scholar
  106. Yadav PS, Mann A, Singh V, Yashveer S, Sharma RK, Singh I (2011) Expression of pluripotency genes in buffalo (Bubalus bubalis) amniotic fluid cells. Reprod Domest Anim 46(4):705–711.  https://doi.org/10.1111/j.1439-0531.2010.01733.x (Epub 2010 Dec 30)CrossRefPubMedGoogle Scholar
  107. Yadav PS, Singh RK, Singh B (2012) Animal fetal stem cells-potential health applications. Agric Res 1:67–77CrossRefGoogle Scholar
  108. Yan L, Lei L, Yang C, Gao Z, Lei A, Ma X, Dou Z (2008) Isolation and cultivation of goat embryo stem cells. Sheng Wu Gong Cheng Xue Bao 24:1670–1676CrossRefGoogle Scholar
  109. Yang Z, Liu J, Liu H, Qiu M, Liu Q, Zheng L, Pang M, Quan F, Zhang Y (2013) Isolation and characterization of SSEA3(+) stem cells derived from goat skin fibroblasts. Cell Reprogram 15(3):195–205.  https://doi.org/10.1089/cell.2012.0080 (Epub 2013 May 13)CrossRefPubMedGoogle Scholar
  110. Yang J, Zhao Q, Wang K, Ma C, Liu H, Liu Y, Guan W (2018) Isolation, culture and biological characteristics of multipotent porcine tendon-derived stem cells. Int J Mol Med 41(6):3611–3619.  https://doi.org/10.3892/ijmm.2018.3545 (Epub 2018 Mar 7)CrossRefGoogle Scholar
  111. Yu S, Zhang P, Dong W, Zeng W, Pan C (2017) Identification of stem leydig cells derived from pig testicular interstitium. Stem Cells Int 2017:2740272.  https://doi.org/10.1155/2017/2740272 (Epub 2017 Jan 24)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations