Advertisement

Transgenesis and Genetically Engineered Livestock as Live Bioreactors

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 564 Downloads

Abstract

Transgenic animals are important components of modern biomedical and veterinary sciences. They produce recombinant proteins, enzymes and antibodies for treating diseases and serve as models for disease research, diagnosis, and prevention. A number of genetically engineered or recombinant products are currently obtained from animals, and some have been approved for humans use. With advances in precise genetic engineering and genome editing and producing cloned gene-edited animals, it is possible to produce larger quantities of recombinant proteins and biologics from transgenic animals.

Highlights
  • The art of producing transgenic or genome-edited livestock has metamorphosed during recent two decades

  • Animals contribute to human health by producing recombinant biomolecules and serving as model animals.

Keywords

Transgenic animals Bioreactors Recombinant therapeutics Biopharming Gene-editing 

References

  1. Arias ME, Sánchez-Villalba E, Delgado A, Felmer R (2017) Effect of transfection and co-incubation of bovine sperm with exogenous DNA on sperm quality and functional parameters for its use in sperm-mediated gene transfer. Zygote 25(1):85–97.  https://doi.org/10.1017/s096719941600037x (Epub 2016 Dec 8)PubMedCrossRefGoogle Scholar
  2. Bai DP, Yang MM, Chen YL (2012) PiggyBac transposon-mediated gene transfer in Cashmere goat fetal fibroblast cells. Biosci Biotechnol Biochem 76(5):933–937 (Epub 2012 May 7)PubMedCrossRefGoogle Scholar
  3. Bai DP, Yang MM, Qu L, Chen YL (2017) Generation of a transgenic cashmere goat using the piggyBac transposition system. Theriogenology 15(93):1–6.  https://doi.org/10.1016/j.theriogenology.2017.01.036 (Epub 2017 Jan 23)CrossRefGoogle Scholar
  4. Behboodi E, Memili E, Melican DT, Destrempes MM, Overton SA, Williams JL, Flanagan PA, Butler RE, Liem H, Chen LH, Meade HM, Gavin WG, Echelard Y (2004) Viable transgenic goats derived from skin cells. Transgenic Res 13(3):215–224PubMedPubMedCentralCrossRefGoogle Scholar
  5. Carneiro IS, Menezes JNR, Maia JA, Miranda AM, Oliveira VBS, Murray JD, Maga EA, Bertolini M, Bertolini LR (2018) Milk from transgenic goat expressing human lysozyme for recovery and treatment of gastrointestinal pathogens. Eur J Pharm Sci 15(112):79–86.  https://doi.org/10.1016/j.ejps.2017.11.005 (Epub 2017 Nov 8)CrossRefGoogle Scholar
  6. Chan AW, Homan EJ, Ballou LU, Burns JC, Bremel RD (1998) Transgenic cattle produced by reverse-transcribed gene transfer in oocytes. Proc Natl Acad Sci USA 95:14028–14033PubMedCrossRefGoogle Scholar
  7. Chang F, Fang R, Wang M, Zhao X, Chang W, Zhang Z, Li N, Meng Q (2017) The transgenic expression of human follistatin-344 increases skeletal muscle mass in pigs. Transgenic Res 26(1):25–36.  https://doi.org/10.1007/s11248-016-9985-x (Epub 2016 Oct 27)CrossRefGoogle Scholar
  8. Cho B, Kim SJ, Lee EJ, Ahn SM, Lee JS, Ji DY, Lee K, Kang JT (2018) Generation of insulin-deficient piglets by disrupting INS gene using CRISPR/Cas9 system. Transgenic Res 27(3):289–300.  https://doi.org/10.1007/s11248-018-0074-1 (Epub 2018 Apr 24)CrossRefGoogle Scholar
  9. Cibelli JB, Stice SL, Golueke PL, Kane JJ, Jerry J, Blackwell C, Ponce de Leon FA, Robl JM (1998) Transgenic bovine chimeric offspring produced from somatic cell-derived stem like cells. Nat Biotechnol 16:642–646CrossRefGoogle Scholar
  10. Clark AJ, Whitelaw B (2003) A future for transgenic livestock. Nat Rev Genet 4:825–833PubMedCrossRefGoogle Scholar
  11. Clark AJ, Bessos H, Bishop JO, Brown P, Harris S, Lathe R, McClenaghan M, Prowse C, Simons JP, Whitelaw CB, Wilmut I (1989) Expression of human anti-hemophilic factor IX in the milk of transgenic sheep. Biotechnology 7:487–492Google Scholar
  12. Cooper CA, Garas Klobas LC, Maga EA, Murray JD (2013) Consuming transgenic goats’ milk containing the antimicrobial protein lysozyme helps resolve diarrhea in young pigs. PLoS One. 8(3):e58409.  https://doi.org/10.1371/journal.pone.0058409 (Epub 2013 Mar 13)PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cornetta K, Tessanne K, Long C, Yao J, Satterfield C, Westhusin M (2013) Transgenic sheep generated by lentiviral vectors: safety and integration analysis of surrogates and their offspring. Transgenic Res 22(4):737–745.  https://doi.org/10.1007/s11248-012-9674-3 (Epub 2012 Nov 23)PubMedCrossRefGoogle Scholar
  14. Damak S, Su H, Jay NP, Bullock DW (1996a) Improved wool production in transgenic sheep expressing insulin-like growth factor 1. Biotechnology (N Y). 14(2):185–188Google Scholar
  15. Damak S, Jay NP, Barrell GK, Bullock DW (1996b) Targeting gene expression to the wool follicle in transgenic sheep. Biotechnology (N Y). 14(2):181–184CrossRefGoogle Scholar
  16. Delerue F, Ittner LM (2017) Generation of genetically modified mice through the microinjection of oocytes. J Vis Exp. 124.  https://doi.org/10.3791/55765
  17. Deng S, Li G, Zhang J, Zhang X, Cui M, Guo Y, Liu G, Li G, Feng J, Lian Z (2013) Transgenic cloned sheep overexpressing ovine toll-like receptor 4. Theriogenology 80(1):50–57.  https://doi.org/10.1016/j.theriogenology.2013.03.008 (Epub 2013 Apr 25)PubMedCrossRefGoogle Scholar
  18. Dong Z, Hu Z, Qin Q, Dong F, Huang L, Long J, Chen P, Lu C, Pan M (2019) CRISPR/Cas9-mediated disruption of the immediate early-0 and 2 as a therapeutic approach to Bombyx mori nucleopolyhedrovirus in transgenic silkworm. Insect Mol Biol 28(1):112–122. https://doi.org/10.1111/imb.12529 (Epub 2018 Oct 8)PubMedCrossRefGoogle Scholar
  19. Garas LC, Cooper CA, Dawson MW, Wang JL, Murray JD, Maga EA (2017) Young pigs consuming lysozyme transgenic goat milk are protected from clinical symptoms of enterotoxigenic Escherichia coli infection. J Nutr 147(11):2050–2059.  https://doi.org/10.3945/jn.117.251322 (Epub 2017 Sep 27)PubMedCrossRefGoogle Scholar
  20. Garcia-Vazquez FA, Ruiz S, Matas C, Izquierdo-Rico MJ, Grullon LA, De Ondiz A, Vieira L, Aviles-Lopez K, Gutierrez-Adán A, Gadea J (2010) Production of transgenic piglets using ICSI-sperm-mediated gene transfer in combination with recombinase RecA. Reproduction 140:259–272PubMedPubMedCentralCrossRefGoogle Scholar
  21. Garrels W, Ivics Z, Kues WA (2012) Precision genetic engineering in large mammals. Trends Biotechnol 30:386–393PubMedCrossRefGoogle Scholar
  22. Gavin W, Blash S, Buzzell N, Pollock D, Chen L, Hawkins N, Howe J, Miner K, Pollock J, Porter C, Schofield M, Echelard Y, Meade H (2018) Generation of transgenic goats by pronuclear microinjection: a retrospective analysis of a commercial operation (1995–2012). Transgenic Res 27(1):115–122.  https://doi.org/10.1007/s11248-017-0050-1 (Epub 2017 Dec 16)PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384PubMedCrossRefGoogle Scholar
  24. Golovan SP, Meidinger RG, Ajakaiye A, Cottrill, M, Weiderkehr MZ, Barney DJ, Plante C, Pollard JW, Fan MZ, Hayes MA, Laursen J, Hjorth, JP, Hacker RR, Phillips JP and Forsberg CW (2001) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19:741–745. Erratum in: Nat Biotechnol 19:979PubMedCrossRefGoogle Scholar
  25. Grześkowiak BF, Hryhorowicz M, Tuśnio K, Grzeszkowiak M, Załęski K, Lipiński D, Zeyland J, Mykhaylyk O, Słomski R, Jurga S, Woźniak A (2016) Generation of transgenic porcine fibroblast cell lines using nanomagnetic gene delivery vectors. Mol Biotechnol 58(5):351–361.  https://doi.org/10.1007/s12033-016-9934-1PubMedPubMedCentralCrossRefGoogle Scholar
  26. Guijarro-Pardo E, Gómez-Sebastián S, Escribano JM (2017) In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors J Virol Methods 250:17–24.  https://doi.org/10.1016/j.jviromet.2017.09.017 (Epub 2017 Sep 22)PubMedCrossRefGoogle Scholar
  27. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315(6021):680–683CrossRefGoogle Scholar
  28. He Z, Lu R, Zhang T, Jiang L, Zhou M, Wu D, Cheng Y (2018) A novel recombinant human plasminogen activator: Efficient expression and hereditary stability in transgenic goats and in vitro thrombolytic bioactivity in the milk of transgenic goats. PLoS One 13(8):e0201788.  https://doi.org/10.1371/journal.pone.0201788 (eCollection 2018)PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4(11):1054–1060 (Epub 2003 Oct 17)PubMedPubMedCentralCrossRefGoogle Scholar
  30. Houdbile LM (2002) The methods to generate transgenic animals and transgene expression. J Biotechnol 98:145–160CrossRefGoogle Scholar
  31. Houdbine LM (2009) Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 32:107–121CrossRefGoogle Scholar
  32. Huang B, Cui K, Li T, Wang XL, Lu F, Liu Q, da Silva FM, Shi D (2008) Generation of buffalo (Bubalus bubalis) transgenic chimeric and nuclear transfer embryos using embryonic germ-like cells expressing enhanced green fluorescent protein. Reprod Domest Anim 45:103–108PubMedCrossRefGoogle Scholar
  33. Hwang SU, Eun K, Yoon JD, Kim H, Hyun SH (2018) Production of transgenic pigs using a pGFAP-CreERT2/EGFP LoxP inducible system for central nervous system disease models. J Vet Sci 19(3):434–445.  https://doi.org/10.4142/jvs.2018.19.3.434PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kling J (2009) First US approval for a transgenic animal drug. Nat Biotechnol 27(4):302–304.  https://doi.org/10.1038/nbt0409-302 (No abstract available)PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kues WA, Niemann H (2004) The contribution of farm animals to human health. Review. Trends Biotechnol 22:286–294PubMedCrossRefGoogle Scholar
  36. Kues WA, Schwinzer R, Wirth D, Verhoeyen E, Lemme E, Herrmann D, Barg-Kues B, Hauser H, Wonigeit H, Niemann H (2006) Epigenetic silencing and tissue independent expression of a novel tetracycline inducible system in double-transgenic pigs. FASEB J 20:E1–E10CrossRefGoogle Scholar
  37. Kumar Pramod R, Kumar R, Mitra A (2016) Transgenic expression of green fluorescent protein in caprine embryos produced through electroporation-aided sperm-mediated gene transfer. Gene 576(1 Pt 3):505–511.  https://doi.org/10.1016/j.gene.2015.10.066 (Epub 2015 Oct 30)PubMedCrossRefGoogle Scholar
  38. Kumar M, Yadav AK, Verma V, Singh B, Mal G, Nagpal R, Hemalatha R (2016) Bioengineered probiotics as a new hope for health and diseases: an overview of potential and prospects. Future Microbiol 11(4):585–600.  https://doi.org/10.2217/fmb.16.4 (Epub 2016 Apr 12. Review)PubMedCrossRefGoogle Scholar
  39. Kuroiwa Y, Kasinathan P, Choi YJ, Naeem R, Tomizuka K, Sullivan EJ, Knott JG, Duteau A, Goldsby RA, Osborne BA, Ishida I, Robl JM (2002) Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol 20:889–894PubMedCrossRefGoogle Scholar
  40. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089–1092PubMedPubMedCentralCrossRefGoogle Scholar
  41. Laible G, Smolenski G, Wheeler T, Brophy B (2016) Increased gene dosage for β- and κ-casein in transgenic cattle improves milk composition through complex effects. Sci Rep 23(6):37607.  https://doi.org/10.1038/srep37607CrossRefGoogle Scholar
  42. Lillico SG, Sherman A, McGrew MJ, Robertson CD, Smith J, Haslam C, Barnard P, Radcliffe PA, Mitrophanous KA, Elliot EA, Sang HM (2007) Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proc Natl Acad Sci USA 104:1771–1776PubMedCrossRefGoogle Scholar
  43. Lufino MM, Esder PA, Wade-Martins R (2008) Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Mol Ther 16:1525–1538CrossRefGoogle Scholar
  44. Luo Y, Wang Y, Liu J, Lan H, Shao M, Yu Y, Quan F, Zhang Y (2015) Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery. Transgenic Res 24(5):875–883.  https://doi.org/10.1007/s11248-015-9898-0 (Epub 2015 Jul 22)CrossRefGoogle Scholar
  45. Ma SY, Smagghe G, Xia QY (2018) Genome editing in Bombyx mori: new opportunities for silkworm functional genomics and the sericulture industry. Insect Sci.  https://doi.org/10.1111/1744-7917.12609 (Epub ahead of print. Review)PubMedCrossRefGoogle Scholar
  46. Maga EA, Shoemaker CF, Rowe JD, Bondurant RH, Anderson GB, Murray JD (2006) Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland. J Dairy Sci 89(2):518–524PubMedPubMedCentralCrossRefGoogle Scholar
  47. Markaki M, Drabek D, Livadaras I, Craig RK, Grosveld F, Savakis C (2007) Stable expression of human growth hormone over 50 generations in transgenic insect larvae. Transgenic Res 16:99–107PubMedCrossRefGoogle Scholar
  48. Masaki H, Nakauchi H (2017) Interspecies chimeras for human stem cell research. Development 144(14):2544–2547.  https://doi.org/10.1242/dev.151183PubMedCrossRefGoogle Scholar
  49. Mascetti VL, Pedersen RA (2016) Contributions of mammalian chimeras to pluripotent stem cell research. Cell Stem Cell 19(2):163–175.  https://doi.org/10.1016/j.stem.2016.07.018PubMedPubMedCentralCrossRefGoogle Scholar
  50. McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405(6790):1066–1069. Erratum in Nature (2000) 408(6808):120PubMedPubMedCentralCrossRefGoogle Scholar
  51. Meidinger RG, Ajakaiye A, Fan MZ, Zhang J, Phillips JP, Forsberg CW (2013) Digestive utilization of phosphorus from plant-based diets in the Cassie line of transgenic Yorkshire pigs that secrete phytase in the saliva. J Anim Sci 91(3):1307–1320.  https://doi.org/10.2527/jas.2012-5575 (Epub 2013 Jan 7)PubMedPubMedCentralCrossRefGoogle Scholar
  52. Melican D, Gavin W (2008) Repeat superovulation, non-surgical embryo recovery, and surgical embryo transfer in transgenic dairy goats. Theriogenology 69(2):197–203 (Epub 2007 Oct 29)PubMedPubMedCentralCrossRefGoogle Scholar
  53. Meng F, Li H, Wang X, Qin G, Oback B, Shi D (2015) Optimized production of transgenic buffalo embryos and offspring by cytoplasmic zygote injection. J Anim Sci Biotechnol. 6:44.  https://doi.org/10.1186/s40104-015-0044-x (eCollection 2015)
  54. Monzani PS, Adona PR, Ohashi OM, Meirelles FV, Wheeler MB (2016) Transgenic bovine as bioreactors: challenges and perspectives. Bioengineered 7(3):123–131.  https://doi.org/10.1080/21655979.2016.1171429 (Epub 2016 May 11. Review)PubMedPubMedCentralCrossRefGoogle Scholar
  55. Müller M, Brenig B, Winnacker EL, Brem G (1992) Transgenic pigs carrying cDNA copies encoding the murine Mx1 protein which confers resistance to influenza virus infection. Gene 121(2):263–270PubMedPubMedCentralCrossRefGoogle Scholar
  56. Nakagawa Y, Sakuma T, Sakamoto T, Ohmuraya M, Nakagata N, Yamamoto T (2015) Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes. BMC Biotechnol 15:33.  https://doi.org/10.1186/s12896-015-0144-x
  57. Nature Biotechnology (2014) Rabbit milk Ruconest for hereditary angioedema. 32:849.  https://doi.org/10.1038/nbt0914-849d
  58. Niemann H, Kues W (2007). Transgenic farm animals. Reprod Fertil Dev 19:762–770Google Scholar
  59. Ono C, Okamoto T, Abe T, Matsuura Y (2018) Baculovirus as a tool for gene delivery and gene therapy. Viruses 10(9):pii: E510.  https://doi.org/10.3390/v10090510 (Review)PubMedCentralCrossRefGoogle Scholar
  60. Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982). Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300:611–615PubMedPubMedCentralCrossRefGoogle Scholar
  61. Parc AL, Karav S, Rouquié C, Maga EA, Bunyatratchata A, Barile D (2017) Characterization of recombinant human lactoferrin N-glycans expressed in the milk of transgenic cows. PLoS One 12(2):e0171477.  https://doi.org/10.1371/journal.pone.0171477 (eCollection 2017)PubMedPubMedCentralCrossRefGoogle Scholar
  62. Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, Ball S, Specht SM, Polejaeva IA, Monahan JA, Jobst PM, Sharma SB, Lamborn AE, Garst AS, Moore M, Demetris AJ, Rudert WA, Bottino R, Bertera S, Trucco M, Starzl TE, Dai Y, Ayares DL (2003) Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299(5605):411–414 (Epub 2002 Dec 19)PubMedPubMedCentralCrossRefGoogle Scholar
  63. Pursel VG, Pinkert CA, Miller KF, Volt DJ, Campbell RG, Palmiter RD, Brinster RL and Hammer RF (1989) Genetic engineering of livestock. Science 244:1281–1288PubMedCrossRefGoogle Scholar
  64. Rajagopal P, Duraiswamy S, Sethuraman S, Giridhara Rao J, Krishnan UM (2018) Polymer-coated viral vectors: hybrid nanosystems for gene therapy. J Gene Med 20(4):e3011.  https://doi.org/10.1002/jgm.3011 (Epub 2018 Mar 25. Review)PubMedCrossRefGoogle Scholar
  65. Reggio BC, James AN, Green HL, Gavin WG, Behboodi E, Echelard Y, Godke RA (2001) Cloned transgenic offspring resulting from somatic cell nuclear transfer in the goat: oocytes derived from both follicle-stimulating hormone-stimulated and nonstimulated abattoir-derived ovaries. Biol Reprod 65(5):1528–1533PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ristevski S (2005) Making better transgenic models: conditional, temporal, and spatial approaches. Review. Mol Biotechnol 29:153–163PubMedCrossRefGoogle Scholar
  67. Roh JI, Lee J, Park SU, Kang YS, Lee J, Oh AR, Choi DJ, Cha JY, Lee HW (2018) CRISPR-Cas9-mediated generation of obese and diabetic mouse models. Exp Anim 67(2):229–237.  https://doi.org/10.1538/expanim.17-0123 (Epub 2018 Jan 16)PubMedPubMedCentralCrossRefGoogle Scholar
  68. Royer C, Jalabert A, Da Rocha M, Grenier AM, Mauchamp B, Couble P, Chavancy G (2005) Biosynthesis and cocoon-export of a recombinant globular protein in transgenic silkworms. Transgenic Res 14:463–472PubMedCrossRefGoogle Scholar
  69. Ruan J, Xu J, Chen-Tsai RY, Li K (2017) Genome editing in livestock: Are we ready for a revolution in animal breeding industry? Transgenic Res 26(6):715–726.  https://doi.org/10.1007/s11248-017-0049-7 (Epub 2017 Nov 1. Review)PubMedCrossRefGoogle Scholar
  70. Sánchez-Villalba E, Arias ME, Loren P, Fuentes F, Pereyra-Bonnet F, Salamone D, Felmer R (2018) Improved expression of green fluorescent protein in cattle embryos produced by ICSI-mediated gene transfer with spermatozoa treated with streptolysin-O. Anim Reprod Sci 196:130–137.  https://doi.org/10.1016/j.anireprosci.2018.07.005 (Epub 2018 Jul 17)PubMedCrossRefGoogle Scholar
  71. Sato M, Ohtsuka M, Nakamura S, Sakurai T, Watanabe S, Gurumurthy CB (2018) In vivo genome editing targeted towards the female reproductive system. Arch Pharm Res 41(9):898–910.  https://doi.org/10.1007/s12272-018-1053-z (Epub 2018 Jul 4. Review)
  72. Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130–2133CrossRefGoogle Scholar
  73. Sheridan C (2016) FDA approves ‘farmaceutical’ drug from transgenic chickens. Nat Biotechnol 34(2):117–119.  https://doi.org/10.1038/nbt0216-117 (No abstract available)PubMedCrossRefGoogle Scholar
  74. Simons JP, McClenaghan M, Clark AJ (1987) Alteration of the quality of the milk by expression of sheep beta-lactoglobulin in transgenic mice. Nature 328:530–532PubMedPubMedCentralCrossRefGoogle Scholar
  75. Singh B, Chauhan MS, Singla SK, Gautam SK, Verma V, Manik RS, Singh AK, Sodhi M, Mukesh M (2009) Reproductive biotechniques in buffalo (Bubalus bubalis): status, prospects and chllanges. Review. Reprod Fertil Dev 21:499–510PubMedPubMedCentralCrossRefGoogle Scholar
  76. Singh B, Mal G, Marotta F (2017) Designer probiotics: paving the way to living therapeutics. Trends Biotechnol 35(8):679–682.  https://doi.org/10.1016/j.tibtech.2017.04.001( Epub 2017 May 5)PubMedPubMedCentralCrossRefGoogle Scholar
  77. Su F, Wang Y, Liu G, Ru K, Liu X, Yu Y, Liu J, Wu Y, Quan F, Guo Z, Zhang Y (2016) Generation of transgenic cattle expressing human β-defensin 3 as an approach to reducing susceptibility to Mycobacterium bovis infection. FEBS J 283(5):776–790.  https://doi.org/10.1111/febs.13641 (Epub 2016 Jan 30)PubMedCrossRefGoogle Scholar
  78. Suchy F, Nakauchi H (2017) Lessons from interspecies mammalian chimeras. Annu Rev Cell Dev Biol 33:203–217.  https://doi.org/10.1146/annurev-cellbio-100616-060654 (Epub 2017 Aug 14. Review)PubMedCrossRefGoogle Scholar
  79. Tabassum N, Verma V, Kumar M, Kumar A, Singh B (2018) Nanomedicine in cancer stem cell therapy: from fringe to forefront. Cell Tissue Res 374(3):427–438.  https://doi.org/10.1007/s00441-018-2928-5PubMedCrossRefGoogle Scholar
  80. Tanihara F, Takemoto T, Kitagawa E, Rao S, Do LT, Onishi A, Yamashita Y, Kosugi C, Suzuki H, Sembon S, Suzuki S, Nakai M, Hashimoto M, Yasue A, Matsuhisa M, Noji S, Fujimura T, Fuchimoto D, Otoi T (2016) Somatic cell reprogramming-free generation of genetically modified pigs. Sci Adv 2(9):e1600803.  https://doi.org/10.1126/sciadv.1600803 (eCollection 2016 Sep)PubMedPubMedCentralCrossRefGoogle Scholar
  81. Tessanne K, Golding MC, Long CR, Peoples MD, Hannon G, Westhusin ME (2012) Production of transgenic calves expressing an shRNA targeting myostatin. Mol Reprod Dev 79(3):176–185. 10.1002/mrd.22007 (Epub 2011 Dec 2)PubMedPubMedCentralCrossRefGoogle Scholar
  82. Verma V, Gautam SK, Palta P, Manik RS, Singla SK, Chauhan MS (2008) Development of a pronuclear DNA microinjection technique for production of green fluorescent protein-expressing bubaline (Bubalus bubalis) embryos. Theriogenology 69(6):655–665.  https://doi.org/10.1016/j.theriogenology.2007.09.035 (Epub 2008 Feb 12)CrossRefGoogle Scholar
  83. Wadhwa N, Kunj N, Tiwari S, Saraiya M, Majumdar SS (2009) Optimization of embryo culture conditions for increasing efficiency of cloning in buffalo (Bubalus bubalis) and generation of transgenic embryos via cloning. Cloning Stem Cells 11(3):387–395.  https://doi.org/10.1089/clo.2009.0003PubMedCrossRefGoogle Scholar
  84. Wang Z, Ruan J, Cui D (2009) Advances and prospect of nanotechnology in stem cells. Nanoscale Res Lett 4(7):593–605.  https://doi.org/10.1007/s11671-009-9292-zPubMedPubMedCentralCrossRefGoogle Scholar
  85. Wang Y, Ding F, Wang T, Liu W, Lindquist S, Hernell O, Wang J, Li J, Li L, Zhao Y, Dai Y, Li N (2017a) Purification and characterization of recombinant human bile salt-stimulated lipase expressed in milk of transgenic cloned cows. PLoS ONE 12(5):e0176864PubMedPubMedCentralCrossRefGoogle Scholar
  86. Wang Y, Zhao X, Du W, Liu J, Chen W, Sun C, Cui B, Zeng Z, Shen Y, Gao F, Wang A, Liu G, Cui H (2017b) Production of transgenic mice through sperm-mediated gene transfer using magnetic nano-carriers. J Biomed Nanotechnol 13:1673–1681.  https://doi.org/10.1166/jbn.2017.2456PubMedCrossRefGoogle Scholar
  87. Wong JKL, Mohseni R, Hamidieh AA, MacLaren RE, Habib N, Seifalian AM (2017) Will nanotechnology bring new hope for gene delivery? Trends Biotechnol 35(5):434–451.  https://doi.org/10.1016/j.tibtech.2016.12.009 (Epub 2017 Jan 18. Review)PubMedCrossRefGoogle Scholar
  88. Woodfint RM, Hamlin E, Lee K (2018) Avian bioreactor systems: a review. Mol Biotechnol  https://doi.org/10.1007/s12033-018-0128-x (Epub ahead of print. Review)PubMedCrossRefGoogle Scholar
  89. Wright G, Carver A, Cottom D, Reeves D, Scott A, Simons P, Wilmut I, Garner I, Colman A (1991) High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Biotechnology (N Y) 9(9):830–834Google Scholar
  90. Wu X, Ouyang H, Duan B, Pang D, Zhang L, Yuan T, Xue L, Ni D, Cheng L, Dong S, Wei Z, Li L, Yu M, Sun QY, Chen DY, Lai L, Dai Y, Li GP (2012) Production of cloned transgenic cow expressing omega-3 fatty acids. Transgenic Res 21(3):537–543.  https://doi.org/10.1007/s11248-011-9554-2 (Epub 2011 Sep 15)CrossRefGoogle Scholar
  91. Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, Suzuki K, Bogliotti YS, Cuello C, Morales Valencia M, Okumura D, Luo J, Vilariño M, Parrilla I, Soto DA, Martinez CA, Hishida T, Sánchez-Bautista S, Martinez-Martinez ML, Wang H, Nohalez A, Aizawa E, Martinez-Redondo P, Ocampo A, Reddy P, Roca J, Maga EA, Esteban CR, Berggren WT, Nuñez Delicado E, Lajara J, Guillen I, Guillen P, Campistol JM, Martinez EA, Ross PJ, Izpisua Belmonte JC (2017) Interspecies chimerism with mammalian pluripotent stem cells. Cell 168(3):473–486.e15.  https://doi.org/10.1016/j.cell.2016.12.036PubMedPubMedCentralCrossRefGoogle Scholar
  92. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398PubMedCrossRefGoogle Scholar
  93. Yadav PS, Singh RK, Singh B (2012) Fetal stem cells in farm animals: applications in health and production. Agric Res 1:67–77CrossRefGoogle Scholar
  94. Yang P, Wang J, Gong G, Sun X, Zhang R, Du Z, Liu Y, Li R, Ding F, Tang B, Dai Y, Li N (2008) Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lectoferrin. PLoS 3:e3453CrossRefGoogle Scholar
  95. Yao YC, Han HB, Song XT, Deng SL, Liu YF, Lu MH, Zhang YH, Qi MY, He HJ, Wang SM, Liu GS, Li W, Lian ZX (2017) Growth performance, reproductive traits and offspring survivability of genetically modified rams overexpressing toll-like receptor 4. Theriogenology 1(96):103–110.  https://doi.org/10.1016/j.theriogenology.2017.04.006 (Epub 2017 Apr 5)CrossRefGoogle Scholar
  96. Yu H, Chen J, Liu S, Zhang A, Xu X, Wang X, Lu P, Cheng G (2013) Large-scale production of functional human lysozyme in transgenic cloned goats. J Biotechnol pii:S0168–1656(13)00456-2.  https://doi.org/10.1016/j.jbiotec.2013.10.023 (Epub ahead of print)CrossRefGoogle Scholar
  97. Zaniboni A, Spinaci M, Zannoni A, Bernardini C, Forni M, Bacci ML (2016) X and Y chromosome-bearing spermatozoa are equally able to uptake and internalize exogenous DNA by sperm-mediated gene transfer in swine. Res Vet Sci 104:1–3.  https://doi.org/10.1016/j.rvsc.2015.11.001 (Epub 2015 Nov 12)PubMedCrossRefGoogle Scholar
  98. Zhang Y, Lu L (2008) Microinjection as a tool of mechanical delivery. Curr Opin Microbiotechnol 19:506–510CrossRefGoogle Scholar
  99. Zhang R, Tang C, Guo H, Tang B, Hou S, Zhao L, Wang J, Ding F, Zhao J, Wang H, Chen Z, Dai Y, Li N (2018a) A novel glycosylated anti-CD20 monoclonal antibody from transgenic cattle. Sci Rep 8(1):13208.  https://doi.org/10.1038/s41598-018-31417-2PubMedPubMedCentralCrossRefGoogle Scholar
  100. Zhang X, Li Z, Yang H, Liu D, Cai G, Li G, Mo J, Wang D, Zhong C, Wang H, Sun Y, Shi J, Zheng E, Meng F, Zhang M, He X, Zhou R, Zhang J, Huang M, Zhang R, Li N, Fan M, Yang J, Wu Z (2018b) Novel transgenic pigs with enhanced growth and reduced environmental impact. Elife. 7. pii: e34286.  https://doi.org/10.7554/elife.34286
  101. Zhu H, Hu L, Liu J, Chen H, Cui C, Song Y, Jin Y, Zhang Y (2016) Generation of β-lactoglobulin-modified transgenic goats by homologous recombination. FEBS J 283(24):4600–4613.  https://doi.org/10.1111/febs.13950 (Epub 2016 Dec 5)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations