Parthenogenesis—A Potential Tool to Reproductive Biotechnology

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh


Parthenogenesis is a form of asexual reproduction in some organisms in which oocyte develops into an embryo without fertilization by sperm. Parthenogenesis is a natural process of reproduction in a few lower invertebrates while higher vertebrates such as humans, mice, and farm animal species have relinquished reproduction by parthenogenesis. However, oocytes can be activated or induced to develop into blastocysts by means of parthenogenetic activation albeit with remarkably low success rates. Parthenogenetic embryos serve as sources of haploid embryonic stem cells may occasionally produce live offspring.

  • Parthenogenesis is an asexual mode of reproduction in some lower animals

  • Parthenogenetic embryos have applications in stem cell biology, animal biotechnology, and biomedical sciences.


Oocyte activation Parthenogenetic applications Embryo development Stem cells 


  1. Bai M, Wu Y, Li J (2016) Generation and application of mammalian haploid embryonic stem cells. J Int Med 280(3):236–245. (Epub 2016 May 3)CrossRefGoogle Scholar
  2. Beatty RA (1957) Parthenogenesis and polyploidy in mammalian development. Cambridge University Press, LondonGoogle Scholar
  3. Campbell KH (1999) Nuclear equivalence, nuclear transfer, and the cell cycle. Cloning 1(1):3–15. ReviewPubMedCrossRefGoogle Scholar
  4. Cheng L (2008) More new lines of human parthenogenetic embryonic stem cells. Cell Res 18(2):215–217. Scholar
  5. Cibelli JB, Grant KA, Chapman KB, Cunniff K, Worst T, Green HL, Walker SJ, Gutin PH, Vilner L, Tabar V, Dominko T, Kane J, Wettstein PJ, Lanza RP, Studer L, Vrana KE, West MD (2002) Parthenogenetic stem cells in nonhuman primates. Science 295(5556):819PubMedPubMedCentralCrossRefGoogle Scholar
  6. Dev K, Giri SK, Kumar A, Yadav A, Singh B, Gautam SK (2012) Expression of transcriptional factor genes (Oct-4, Nanog, and Sox-2) and embryonic stem cell-like characters in placental membrane of Buffalo (Bubalus bubalis). J Membr Biol 245(4):177–183. Scholar
  7. Dighe V, Clepper L, Pedersen D, Byrne J, Ferguson B, Gokhale S, Penedo MC, Wolf D, Mitalipov S (2008) Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes. Stem Cells 26(3):756–766. Scholar
  8. Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM 3rd, Yanagimachi R, Jaenisch R (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci U S A 98(11):6209–6214 (Epub 2001 May 1)PubMedPubMedCentralCrossRefGoogle Scholar
  9. Espejel S, Eckardt S, Harbell J, Roll GR, McLaughlin KJ, Willenbring H (2014) Brief report: parthenogenetic embryonic stem cells are an effective cell source for therapeutic liver repopulation. Stem Cells 32(7):1983–1988. Scholar
  10. Everett CA, West JD (1998) Evidence for selection against tetraploid cells in tetraploid <-->diploid mouse chimaeras before the late blastocyst stage. Genet Res 72(3):225–228PubMedCrossRefGoogle Scholar
  11. Fukui Y, Sakuma Y (1980) Maturation of bovine oocytes cultured in vitro: relation to ovarian activity, follicular size and the presence or absence of cumulus cells. Biol Reprod 22(3):669–673. Scholar
  12. Funahashi H, Cantley TC, Stumpf TT, Terlouw SL, Day BN (1994) In vitro development of in vitro-matured porcine oocytes following chemical activation or in vitro fertilization. Biol Reprod 50(5):1072–1077PubMedCrossRefGoogle Scholar
  13. Gómez MC, Jenkins JA, Giraldo A, Harris RF, King A, Dresser BL, Pope CE (2003) Nuclear transfer of synchronized african wild cat somatic cells into enucleated domestic cat oocytes. Biol Reprod 69(3):1032–1041 (Epub 2003 May 28)PubMedCrossRefGoogle Scholar
  14. Grabiec A, Max A, Tischner M (2007) Parthenogenetic activation of domestic cat oocytes using ethanol, calcium ionophore, cycloheximide and a magnetic field. Theriogenology 67(4):795–800PubMedCrossRefGoogle Scholar
  15. Hagemann LJ, Hillery-Weinhold FL, Leibfried Rutledge ML, First NL (1995) Activation of murine oocytes with Ca2+ ionophore and cycloheximide. J Exp Zool 271(1):57–61PubMedCrossRefGoogle Scholar
  16. Hirabayashi M, Hara H, Goto T, Takizawa A, Dwinell MR, Yamanaka T, Hochi S, Nakauchi H (2017) Haploid embryonic stem cell lines derived from androgenetic and parthenogenetic rat blastocysts. J Reprod Dev 63(6):611–616. Scholar
  17. Johannsen H, Muppala V, Gröschel C, Monecke S, Elsner L, Didié M, Zimmermann WH, Dressel R (2017) Immunological properties of murine parthenogenetic stem cells and their differentiation products. Front Immunol 8:924. (eCollection 2017)PubMedPubMedCentralCrossRefGoogle Scholar
  18. Kaufman MH, Webb S (1990) Postimplantation development of tetraploid mouse embryos produced by electrofusion. Development 110:1121–1132PubMedGoogle Scholar
  19. Kaufman MH, Robertson EJ, Handyside AH, Evans MJ (1983) Establishment of pluripotential cell lines from haploid mouse embryos. J Embryol Exp Morphol 73:249–261PubMedGoogle Scholar
  20. Kim NH, Simerly C, Funahashi H, Schatten G, Day BN (1996) Microtubule organization in porcine oocytes during fertilization and parthenogenesis. Biol Reprod 54(6):1397–1404PubMedCrossRefGoogle Scholar
  21. King WA, Xu KP, Sirard MA, Greve T, Leclerc P, Lambert RD, Jacques P (1988) Cytogenetic study of parthenogenetically activated bovine oocytes matured in vivo and in vitro. Gamete Res 20(3):265–274PubMedCrossRefGoogle Scholar
  22. Kitiyanant Y, Saikhun J, Pavasuthipaisit K (2003) Somatic cell nuclear transfer in domestic cat oocytes treated with IGF-I for in vitro maturation. Theriogenology 59(8):1775–1786PubMedCrossRefGoogle Scholar
  23. Kochan J, Nowak A, Niżański W, Prochowska S, Migdał A, Młodawska W, Partyka A, Witkowski M (2018) Developmental competence of cat (Felis domesticus) oocytes and embryos after parthenogeneticstimulation using different methods. Zygote 1–8. Scholar
  24. Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park ES, Seo JS, Ogawa H (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature 428(6985):860–864PubMedCrossRefGoogle Scholar
  25. Lee SR, Kim JW, Kim BS, Kim MO, Kim SH, Yoo DH, Shin MJ, Lee S, Park YS, Park YB, Ha JH, Ryoo ZY (2007) The parthenogenetic activation of canine oocytes with Ca-EDTA by various culture periods and concentrations. Theriogenology 67(4):698–703 (Epub 2006 Nov 27)PubMedCrossRefGoogle Scholar
  26. Loi P, Ledda S, Fulka J Jr, Cappai P, Moor RM (1998) Development of parthenogenetic and cloned ovine embryos: effect of activation protocols. Biol Reprod 58(5):1177–1187PubMedCrossRefGoogle Scholar
  27. Macháty Z, Funahashi H, Mayes MA, Day BN, Prather RS (1996) Effects of injecting calcium chloride into in vitro-matured porcine oocytes. Biol Reprod 54(2):316–322PubMedCrossRefGoogle Scholar
  28. Madan ML, Singla SK, Chauhan MS, Manik RS (1994) In vitro production and transfer of embryos in buffaloes. Theriogenology 41:139–143CrossRefGoogle Scholar
  29. Mai Q, Yu Y, Li T, Wang L, Chen MJ, Huang SZ, Zhou C, Zhou Q (2007) Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17(12):1008–1019PubMedCrossRefGoogle Scholar
  30. Mayes MA, Stogsdill PL, Prather RS (1995) Parthenogenic activation of pig oocytes by protein kinase inhibition. Biol Reprod 53(2) 270–275. Scholar
  31. Méo SC, Leal CL, Garcia JM (2004) Activation and early parthenogenesis of bovine oocytes treated with ethanol and strontium. Anim Reprod Sci 81(1–2):35–46PubMedCrossRefGoogle Scholar
  32. Méo SC, Yamazaki W, Ferreira CR, Perecin F, Saraiva NZ, Leal CL, Garcia JM (2007) Parthenogenetic activation of bovine oocytes using single and combined strontium, ionomycin and 6-dimethylaminopurine treatments. Zygote 15(4):295–306PubMedCrossRefGoogle Scholar
  33. Nandi S, Chauhan MS, Plata P (2000) Effect of a corpus luteum in the recovery and developmental potential of buffalo oocytes. Vet Rec 147:580–581PubMedCrossRefGoogle Scholar
  34. Newman-Smith ED, Werb Z (1995) Stem cell defects in parthenogenetic peri-implantation embryos. Development 121(7):2069–2077PubMedGoogle Scholar
  35. Nussbaum DJ, Prather RS (1995) Differential effects of protein synthesis inhibitors on porcine oocyte activation. Mol Reprod Dev 41(1):70–75PubMedCrossRefGoogle Scholar
  36. Pincus G, Enzmann EV (1936) The comparative behavior of mammalian eggs in vivo and in vitro. II. The activation of tubal eggs of the rabbit. J Exp Zool 73:195–208CrossRefGoogle Scholar
  37. Prichard JF, Thibodeaux JK, Pool SH, Blakewood EG, Menezo Y, Godke RA (1992) In-vitro co-culture of early stage caprine embryos with oviduct and uterine epithelial cells. Hum Reprod 7(4):553–557PubMedCrossRefGoogle Scholar
  38. Ramachandran R, Nascimento Dos Santos M, Parker HM, McDaniel CD (2018) Parental sex effect of parthenogenesis on progeny production and performance of Chinese Painted Quail (Coturnix chinensis). Theriogenology 118:96–102. (Epub 2018 Jun 1)PubMedCrossRefGoogle Scholar
  39. Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, Pryzhkova MV (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9(3):432–449PubMedCrossRefGoogle Scholar
  40. Ruddock NT, Macháty Z, Cabot RA, Prather RS (2001) Porcine oocyte activation: differing roles of calcium and pH. Mol Reprod Dev 59(2):227–234PubMedCrossRefGoogle Scholar
  41. Ruddock NT, Wilson KJ, Cooney MA, Korfiatis NA, Tecirlioglu RT, French AJ (2004) Analysis of imprinted messenger RNA expression during bovine preimplantation development. Biol Reprod 70(4):1131–1135 (Epub 2003 Dec 10)PubMedCrossRefGoogle Scholar
  42. Sato K, Yoshida M, Miyoshi K (2005) Utility of ultrasound stimulation for activation of pig oocytes matured in vitro. Mol Reprod Dev 72(3):396–403PubMedCrossRefGoogle Scholar
  43. Savage TF, Harper JA (1986) Parthenogenesis in medium white turkeys selected for low and high semen ejaculate volumes. Poult Sci 65(2):401–402PubMedCrossRefGoogle Scholar
  44. Shamsuddin M, Larsson B, Gustafsson H, Rodriguez-Martinez H (1994) A serum-free, cell-free culture system for development of bovine one-cell embryos up to blastocyst stage with improved viability. Theriogenology 41(5):1033–1043PubMedCrossRefGoogle Scholar
  45. Singh B, Gautam SK, Verma V, Singla SK. 2012. Derivation of pluripotent stem cell-like cells from nuclear transferred cloned bubaline (Bubalus bubalis) embryos. Reprod Domest Anim 47(Suppl. 5): 108–109. (Abstract)Google Scholar
  46. Sturm KS, Flannery ML, Pedersen RA (1994) Abnormal development of embryonic and extraembryonic cell lineages in parthenogenetic mouse embryos. Dev Dyn 201(1):11–28PubMedCrossRefGoogle Scholar
  47. Suomalainen E (1950) Pathenogenesis in animals. Adv Genet 3:193–253PubMedCrossRefGoogle Scholar
  48. Tanaka M, Daimon T (2018) First molecular genetic evidence for automictic parthenogenesis in cockroaches. Insect Sci. Scholar
  49. Totey SM, Singh G, Taneja M, Pawshe CH, Talwar GP (1992) In vitro maturation, fertilization and development of follicular oocytes from buffalo (Bubalus bubalis). J Reprod Fertil 95(2):597–607PubMedCrossRefGoogle Scholar
  50. Toyokawa K, Harayama H, Miyake M (2005) Exogenous hyaluronic acid enhances porcine parthenogenetic embryo development in vitro possibly mediated by CD44. Theriogenology 64(2):378–392 (Epub 2005 Jan 11)PubMedCrossRefGoogle Scholar
  51. Verma V, Gautam SK, Singh B, Manik RS, Palta P, Singla SK, Goswami SL, Chauhan MS (2007) Isolation and characterization of embryonic stem cell-like cells from in vitro-produced buffalo (Bubalus bubalis) embryos. Mol Reprod Dev 74(4):520–529CrossRefGoogle Scholar
  52. Vogt G (2018) Annotated bibliography of the parthenogenetic marbled crayfish Procambarus virginalis, a new research model, potent invader and popular pet. Zootaxa 4418(4):301–352. Scholar
  53. Wang ZQ, Kiefer F, Urbánek P, Wagner EF (1997) Generation of completely embryonic stem cell-derived mutant mice using tetraploid blastocyst injection. Mech Dev 62(2):137–145PubMedCrossRefGoogle Scholar
  54. White MJ, Contreras N, Chency J, Webb GC (1977) Cytogenetics of the parthenogenetic grasshopper Warramaba (formerly Moraba) virgo and its bisexual relatives. II. Hybridization studies. Chromosoma 61(2):127–148PubMedCrossRefGoogle Scholar
  55. Witkowska A (1973) Parthenogenetic development of mouse embryos in vivo. II. Postimplantation development. J Embryol Exp Morphol 30(3):547–560 (No abstract available)Google Scholar
  56. Xiong XR, Lan DL, Li J, Wang Y, Zhong JC (2015) Sodium butyrate improves the cloned yak embryo viability and corrects gene expression patterns. Zygote 23(1):19–26. (Epub 2013 Jun 12)PubMedCrossRefGoogle Scholar
  57. Yadav EN, Karche SD, Goel AK, Jindal SK, Johri DK (2007) Comparative efficacy of different techniques for oocytes recovery from prepubertal goat ovaries. Indian J Anim Sci 77:988–990Google Scholar
  58. Yang H, Liu Z, Ma Y, Zhong C, Yin Q, Zhou C, Shi L, Cai Y, Zhao H, Wang H, Tang F, Wang Y, Zhang C, Liu XY, Lai D, Jin Y, Sun Q, Li J (2013) Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes. Cell Res 23(10):1187–1200. (Epub 2013 Jul 16)PubMedPubMedCentralCrossRefGoogle Scholar
  59. Zhang M, Liu Y, Liu G, Li X, Jia Y, Sun L, Wang L, Zhou Q, Huang Y (2015) Rapidly generating knockout mice from H19-Igf2 engineered androgenetic haploid embryonic stem cells. Cell Discov 1:15031. (eCollection 2015)PubMedPubMedCentralCrossRefGoogle Scholar
  60. Zhong C, Li J (2017) Efficient generation of gene-modified mice by haploid embryonic stem cell-mediated semi-cloned technology. Methods Mol Biol 1498:121–133PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations