Advertisement

Spermatogonial Stem Cells in Farm Animals

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 542 Downloads

Abstract

Spermatogonial stem cells (SSCs) are the unipotent founding germ stem cells that originate from seminiferous tubules in testes and serve as the carrier of genetic information from father to offspring. The SSCs restore fertility and can be exploited for gene targeting and regenerative medicine. Bioengineered or gene-edited SSCs transplanted into testes generate transgenic sperm.

Highlights
  • The SSCs are the adult germ stem cells that serve as basis of male fertility

  • SSCs can be reprogrammed to pluripotency and differentiated into other types of cells.

Keywords

Spermatogonial stem cells Spermatogonia Genetic manipulation Infertility treatment Surrogate males 

References

  1. Aliakbari F, Gilani MA, Amidi F, Baazm M, Korouji M, Izadyar F, Yazdekhasti H, Abbasi M (2016) Improving the efficacy of cryopreservation of spermatogonia stem cells by antioxidant supplements. Cell Reprogram 18(2):87–95.  https://doi.org/10.1089/cell.2015.0067CrossRefPubMedGoogle Scholar
  2. Aponte PM (2015) Spermatogonial stem cells: current biotechnological advances in reproduction and regenerative medicine. World J Stem Cells 7(4):669–680.  https://doi.org/10.4252/wjsc.v7.i4.669CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aponte PM, Soda T, Teerds KJ, Mizrak SC, van de Kant HJ, de Rooij DG (2008) Propagation of bovine spermatogonial stem cells in vitro. Reproduction 136(5):543–557.  https://doi.org/10.1530/REP-07-0419 (Epub 2008 Jul 28)CrossRefPubMedGoogle Scholar
  4. Bi Y, Hua Z, Liu X, Hua W, Ren H, Xiao H, Zhang L, Li L, Wang Z, Laible G, Wang Y, Dong F, Zheng X (2016) Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep 6:31729.  https://doi.org/10.1038/srep31729CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brinster RL, Avarbock MR (1994) Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A 91(24):11303–11307CrossRefGoogle Scholar
  6. Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A 91(24):11298–11302CrossRefGoogle Scholar
  7. Costa GMJ, Avelar GF, Lacerda SMSN, Figueiredo AFA, Tavares AO, Rezende-Neto JV, Martins FGP, França LR (2017) Horse spermatogonial stem cell cryopreservation: feasible protocols and potential biotechnological applications. Cell Tissue Res 370(3):489–500.  https://doi.org/10.1007/s00441-017-2673-1 (Epub 2017 Aug 22)CrossRefPubMedGoogle Scholar
  8. Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM (2009) Derivation of induced pluripotent stem cells from the pig somatic cells. Proc Natl Acad Sci U S A 106:10993–10998CrossRefGoogle Scholar
  9. Goissis MD, Giassetti MI, Worst RA, Mendes CM, Moreira PV, Assumpção MEOA, Visintin JA (2018) Spermatogonial stem cell potential of CXCR10-positive cells from prepubertal bull testes. Anim Reprod Sci 196:219–229.  https://doi.org/10.1016/j.anireprosci.2018.08.014 (Epub 2018 Aug 11)CrossRefPubMedGoogle Scholar
  10. Ha SJ, Kim BG, Lee YA, Kim YH, Kim BJ, Jung SE, Pang MG, Ryu BY (2016) Effect of antioxidants and apoptosis inhibitors on cryopreservation of murine germ cells enriched for spermatogonial stem cells. PLoS ONE 11(8):e0161372.  https://doi.org/10.1371/journal.pone.0161372 (eCollection)CrossRefPubMedPubMedCentralGoogle Scholar
  11. Heidari B, Rahmati-Ahmadabadi M, Akhondi MM, Zarnani AH, Jeddi-Tehrani M, Shirazi A, Naderi MM, Behzadi B (2012) Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers. J Assist Reprod Genet 29(10):1029–1038.  https://doi.org/10.1007/s10815-012-9828-5 (Epub 2012 Jul 11)CrossRefGoogle Scholar
  12. Jung H, Roser JF, Yoon M (2014) UTF1, a putative marker for spermatogonial stem cells in stallions. PLoS ONE 9(10):e108825.  https://doi.org/10.1371/journal.pone.0108825 (eCollection)CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kadam P, Ntemou E, Baert Y, Van Laere S, Van Saen D, Goossens E (2018) Co-transplantation of mesenchymal stem cells improves spermatogonial stem cell transplantation efficiency in mice. Stem Cell Res Ther 9(1):317.  https://doi.org/10.1186/s13287-018-1065-0CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kanatsu-Shinohara M, Ogonuki N, Iwano T, Lee J, Kazuki Y, Inoue K, Miki H, Takehashi M, Toyokuni S, Shinkai Y, Oshimura M, Ishino F, Ogura A, Shinohara T (2005) Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development 132(18):4155–4163 (Epub 2005 Aug 17)CrossRefGoogle Scholar
  15. Kanatsu-Shinohara M, Morimoto H, Shinohara T (2016) Fertility of male germline stem cells following spermatogonial transplantation in infertile mouse models. Biol Reprod 94(5):112.  https://doi.org/10.1095/biolreprod.115.137869 (Epub 2016 Apr 6)CrossRefPubMedGoogle Scholar
  16. Kim KJ, Lee YA, Kim BJ, Kim YH, Kim BG, Kang HG, Jung SE, Choi SH, Schmidt JA, Ryu BY (2015) Cryopreservation of putative pre-pubertal bovine spermatogonial stem cells by slow. Cryobiology 70(2):175–183.  https://doi.org/10.1016/j.cryobiol.2015.02.007 (Epub 2015 Feb 28)CrossRefPubMedGoogle Scholar
  17. Kim BJ, Kim YH, Oh MG, Kim KJ, Jung SE, Jin JH, Kim SU, Min KS, Ryu BY (2018) Direct modification of spermatogonial stem cells using lentivirus vectors in vivo leads to efficient generation of transgenic rats. Asian J Androl.  https://doi.org/10.4103/aja.aja_80_18 (Epub ahead of print)CrossRefGoogle Scholar
  18. Kubota H, Brinster RL (2018) Spermatogonial stem cells. Biol Reprod 99(1):52–74.  https://doi.org/10.1093/biolre/ioy077CrossRefPubMedGoogle Scholar
  19. Lee YA, Kim YH, Ha SJ, Kim KJ, Kim BJ, Kim BG, Choi SH, Kim IC, Schmidt JA, Ryu BY (2014a) Cryopreservation of porcine spermatogonial stem cells by slow-freezing testis tissue in trehalose. J Anim Sci 92(3):984–995.  https://doi.org/10.2527/jas.2013-6843 (Epub 2014 Feb 6)CrossRefPubMedGoogle Scholar
  20. Lee WY, Lee KH, Heo YT, Kim NH, Kim JH, Kim JH, Moon SH, Chung HJ, Yoon MJ, Song H (2014b) Transcriptional coactivator undifferentiated embryonic cell transcription factor 1 expressed inspermatogonial stem cells: a putative marker of boar spermatogonia. Anim Reprod Sci 150(3–4):115–124.  https://doi.org/10.1016/j.anireprosci.2014.09.010 (Epub 2014 Sep 28)CrossRefPubMedGoogle Scholar
  21. Lee SW, Wu G, Choi NY, Lee HJ, Bang JS, Lee Y, Lee M, Ko K, Schöler HR, Ko K (2018) Self-reprogramming of spermatogonial stem cells into pluripotent stem cells without microenvironment of feeder cells. Mol Cells 41(7):631–638.  https://doi.org/10.14348/molcells.2018.2294 (Epub 2018 Jul 10)CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ma F, Zhou Z, Li N, Zheng L, Wu C, Niu B, Tang F, He X, Li G, Hua J (2016) Lin28a promotes self-renewal and proliferation of dairy goat spermatogonial stem cells (SSCs) through regulation of mTOR and PI3K/AKT. Sci Rep 6:38805.  https://doi.org/10.1038/srep38805CrossRefPubMedPubMedCentralGoogle Scholar
  23. Moraveji SF, Esfandiari F, Sharbatoghli M, Taleahmad S, Nikeghbalian S, Shahverdi A, Baharvand H (2019) Optimizing methods for human testicular tissue cryopreservation and spermatogonial stem cell isolation. J Cell Biochem 120(1):613–621.  https://doi.org/10.1002/jcb.27419 (Epub 2018 Sep 22)CrossRefPubMedGoogle Scholar
  24. Mulder CL, Zheng Y, Jan SZ, Struijk RB, Repping S, Hamer G, van Pelt AM (2016) Spermatogonial stem cell autotransplantation and germline genomic editing: a future cure for spermatogenic failure and prevention of transmission of genomic diseases. Hum Reprod Update 22(5):561–573.  https://doi.org/10.1093/humupd/dmw017 (Epub 2016 May 30. Review)CrossRefGoogle Scholar
  25. Oatley JM (2017) Recent advances for spermatogonial stem cell transplantation in livestock. Reprod Fertil Dev 30(1):44–49.  https://doi.org/10.1071/RD17418CrossRefPubMedGoogle Scholar
  26. Onofre J, Baert Y, Faes K, Goossens E (2016) Cryopreservation of testicular tissue or testicular cell suspensions: a pivotal step in fertility preservation. Hum Reprod Update 22(6):744–761CrossRefGoogle Scholar
  27. Park JE, Park MH, Kim MS, Park YR, Yun JI, Cheong HT, Kim M, Choi JH, Lee E, Lee ST (2017a) Porcine spermatogonial stem cells self-renew effectively in a three dimensional culture microenvironment. Cell Biol Int 41(12):1316–1324.  https://doi.org/10.1002/cbin.10844CrossRefPubMedGoogle Scholar
  28. Park KE, Kaucher AV, Powell A, Waqas MS, Sandmaier SE, Oatley MJ, Park CH, Tibary A, Donovan DM, Blomberg LA, Lillico SG, Whitelaw CB, Mileham A, Telugu BP, Oatley JM (2017b) Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci Rep 7:40176.  https://doi.org/10.1038/srep40176CrossRefPubMedPubMedCentralGoogle Scholar
  29. Park K, Kim MS, Kang M, Kang T, Kim B, Lee ST (2019) Successful genetic modification of porcine spermatogonial stem cells via an electrically responsive Au nanowire injector. Biomaterials 193:22–29.  https://doi.org/10.1016/j.biomaterials.2018.12.005CrossRefPubMedGoogle Scholar
  30. Pasha HF, Rezk NA, Selim SA, Abd El Motteleb DM (2016) Therapeutic effect of spermatogonial stem cell on testicular damage caused by lead in rats. Gene 592(1):148–153.  https://doi.org/10.1016/j.gene.2016.07.065CrossRefPubMedGoogle Scholar
  31. Phillips BT, Gassei K, Orwig KE (2010) Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 365(1546):1663–1678.  https://doi.org/10.1098/rstb.2010.0026CrossRefPubMedPubMedCentralGoogle Scholar
  32. Qasemi-Panahi B, Movahedin M, Moghaddam G, Tajik P, Koruji M, Ashrafi-Helan J, Rafat SA (2018) Isolation and proliferation of spermatogonial cells from ghezel sheep. Avicenna J Med Biotechnol 10(2):93–97PubMedPubMedCentralGoogle Scholar
  33. Sahare MG, Suyatno Imai H (2018) Recent advances of in vitro culture systems for spermatogonial stem cells in mammals. Reprod Med Biol 17(2):134–142.  https://doi.org/10.1002/rmb2.12087 (eCollection 2018 Apr. Review)CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sato T, Ogawa T (2019) Generating genetically engineered mice using a spermatogonial stem cell-mediated method. Methods Mol Biol 1874:87–98.  https://doi.org/10.1007/978-1-4939-8831-0_5CrossRefPubMedGoogle Scholar
  35. Sato T, Sakuma T, Yokonishi T, Katagiri K, Kamimura S, Ogonuki N, Ogura A, Yamamoto T, Ogawa T (2015) Genome editing in mouse spermatogonial stem cell lines using TALEN and double-nicking CRISPR/Cas9. Stem Cell Rep 5(1):75–82.  https://doi.org/10.1016/j.stemcr.2015.05.011CrossRefGoogle Scholar
  36. Sharma A, Shah SM, Saini N, Mehta P, Kumar BSB, Dua D, Singh MK, Singla SK, Palta P, Manik RS, Chauhan MS (2019) Optimization of serum-free culture conditions for propagation of putative buffalo (Bubalus bubalis) spermatogonial stem cells. Cell Reprogram.  https://doi.org/10.1089/cell.2018.0018 (Epub ahead of print)CrossRefGoogle Scholar
  37. Simon L, Hess RA, Cooke PS (2010) Spermatogonial stem cells, in vivo transdifferentiation and human regenerative medicine. Expert Opin Biol Ther 10(4):519–530.  https://doi.org/10.1517/14712591003614731CrossRefPubMedGoogle Scholar
  38. Singh B, Chauhan MS, Singla SK, Gautam SK, Verma V, Manik RS, Singh AK, Sodhi M, Mukesh M (2009) Reproductive biotechniques in buffaloes (Bubalus bubalis): status, prospects, and challenges. Review. Reprod. Fertil. Dev 21:499–510CrossRefGoogle Scholar
  39. Takashima S (2018) Biology and manipulation technologies of male germline stem cells in mammals. Reprod Med Biol 17(4):398–406.  https://doi.org/10.1002/rmb2.12220 (eCollection 2018 Oct. Review)CrossRefPubMedPubMedCentralGoogle Scholar
  40. Takashima S, Shinohara T (2018) Culture and transplantation of spermatogonial stem cells. Stem Cell Res 29:46–55.  https://doi.org/10.1016/j.scr.2018.03.006 (Epub 2018 Mar 15)CrossRefPubMedGoogle Scholar
  41. Tegelenbosch RA, de Rooij DG (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 290(2):193–200CrossRefGoogle Scholar
  42. Wei Y, Cai S, Ma F, Zhang Y, Zhou Z, Xu S, Zhang M, Peng S, Hua J (2018) Double sex and mab-3 related transcription factor 1 regulates differentiation and proliferation in dairy goat male germline stem cells. J Cell Physiol 233(3):2537–2548.  https://doi.org/10.1002/jcp.26129CrossRefPubMedGoogle Scholar
  43. Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, Wang Y, Xie Z, Bai M, Yin Q, Liang D, Tang W, Liao J, Zhou C, Liu W, Zhu P, Guo H, Pan H, Wu C, Shi H, Wu L, Tang F, Li J (2015) Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonialstem cells. Cell Res 25(1):67–79.  https://doi.org/10.1038/cr.2014.160CrossRefPubMedGoogle Scholar
  44. Yu X, Riaz H, Dong P, Chong Z, Luo X, Liang A, Yang L (2014) Identification and IVC of spermatogonial stem cells in prepubertal buffaloes. Theriogenology 81(9):1312–1322.  https://doi.org/10.1016/j.theriogenology.2014.03.002 (Epub 2014 Mar 12)CrossRefPubMedGoogle Scholar
  45. Zhao HM, Yang H, Luo FH, Li MX, Zhang S, Yang XG, Lu YQ, Lu SS, Wu YJ, Lu KH (2016) Isolation, proliferation, and induction of Bama mini-pig spermatogonial stem cells in vitro. Genet Mol Res 15(3).  https://doi.org/10.4238/gmr.15038602

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations