Gut/Rumen Microbiome—A Livestock and Industrial Perspective

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh


The rumen is a complex microbial ecosystem and an active metabolic organ involved in degradation and fermentation of fibrous plant diets. The rumen microbiota is exceedingly diverse and contains representatives of all three domains— Eucarya , methanogenic Archaea, and Bacteria and phages. The digestion is carried out by microbial enzymatic, and mechanical means, i.e., mastication of ingested feed, and churning by rumen muscular movements. Short-chain fatty acids, microbial proteins, CO2, H2, and CH4 are major end products of rumen digestive process.

  • Rumen hosts dense population of microorganisms: Eucarya, Archaea, and Bacteria

  • Majority of the rumen microorganisms are obligatory anaerobes and unculturable

  • Rumen is a potentially fertile ground for microbial ecologists, molecular microbiologists from commercial point of view.


Rumen Ruminants Anaerobic fungi Phytometabolites Detoxification 


  1. Adams JC, Gazaway JA Jr, Brailsford MD, Hartman PA, Jacobson NL (1966) Isolation of bacteriophages from the bovine rumen. Experientia 22:717–718. Scholar
  2. Anderson CL, Sullivan MB, Fernando SC (2017) Dietary energy drives the dynamic response of bovine rumen viral communities. Microbiome 5(1):155. Scholar
  3. Barr DJS, Kudo H, Jackober KD, Cheng KJ (1989) Morphology and development of rumen fungi: Neocallimastix sp., Piromyces communis, Orpinomyces bovis, gen. nov. sp. nov. Can J Bot 67:2815–2824CrossRefGoogle Scholar
  4. Bhat TK, Makkar HP, Singh B (1996) Isolation of a tannin-protein complex degrading fungus from the faeces of hill cattle. Lett Appl Mirobiol 22:257–258CrossRefGoogle Scholar
  5. Breton A, Bernalier A, Dusser M (1990) Anaeromyces mucronatus nov. gen, nov. sp. a new strictly anaerobic rumen fungus with polycentric thallus. FEMS Microbiol Lett 70:177–182Google Scholar
  6. Derakhshani H, Corley SW, Al Jassim R (2016) Isolation and characterization of mimosine, 3,4 DHP and 2,3 DHP degrading bacteria from a commercial rumen inoculum. J Basic Microbiol 56(5):580–585. Scholar
  7. Fawaz M, Vijayakumar P, Mishra A, Gandhale PN, Dutta R, Kamble NM, Sudhakar SB, Roychoudhary P, Kumar H, Kulkarni DD, Raut AA (2016) Duck gut viral metagenome analysis captures snapshot of viral diversity. Gut Pathog 8:30. (eCollection 2016)CrossRefPubMedPubMedCentralGoogle Scholar
  8. Firkins JL, Yu Z (2006) Characterisation and quantification of the microbial populations of the rumen. In: Sejrsen K, Hvelplund T, Nielsen MO (eds) Ruminant physiology. Digestion, metabolism, and impact of nutrition on gene expression, immunology, and stress. Wageningen Academic Publishers, Wageningen, Netherlands, pp 19–54Google Scholar
  9. Friedman N, Jami E, Mizrahi I (2017) Compositional and functional dynamics of the bovine rumen methanogenic community across different developmental stages. Environ Microbiol 19(8):3365–3373. (Epub 2017 Aug 7)CrossRefGoogle Scholar
  10. Gilbert RA, Kelly WJ, Altermann E, Leahy SC, Minchin C, Ouwerkerk D, Klieve AV (2017) Toward understanding phage: host interactions in the rumen; complete genome sequences of lytic phages infecting rumen bacteria. Front Microbiol 8:2340. (eCollection 2017)
  11. Gold JJ, Heath IB, Bauchop T (1988) Ultrastructural description of a new chytrid genus of caecum anaerobe Caecomyces equi gen. nov., sp. nov., assigned to the Neocallimasticaceae. BioSystems 21:403–415CrossRefGoogle Scholar
  12. Gruby D, Delafond HMO (1843) Recherches ser des animalcules se de veloppant en grand nombre dans l’estomac et dans les intestins, pedant la digestion des animaux herbivores et carnivores. Compt Rend Acad Sci 17:1304–1308 (cited in)Google Scholar
  13. Ho YW, Bauchop T (1990) Ruminomyces elegans gen. sp. nov. A polycentric anaerobic rumen fungus from cattle. Mycotaxon 38:397–405Google Scholar
  14. Hoogenraad NJ, Hirk FJ, Holmes I, Millis NF (1967) Bacteriophages in rumen contents of sheep. J Gen Virol 1(4):575–576 (No abstract available)CrossRefGoogle Scholar
  15. Hungate RE (1966) The rumen and its microbes. Academic Press, New York, NYGoogle Scholar
  16. Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, Muñoz-Tamayo R, Forano E, Waters SM, Hess M, Tapio I, Smidt H, Krizsan SJ, Yáñez-Ruiz DR, Belanche A, Guan L, Gruninger RJ, McAllister TA, Newbold CJ, Roehe R, Dewhurst RJ, Snelling TJ, Watson M, Suen G, Hart EH, Kingston-Smith AH, Scollan ND, do Prado RM, Pilau EJ, Mantovani HC, Attwood GT, Edwards JE, McEwan NR, Morrisson S, Mayorga OL, Elliott C, Morgavi DP (2018) Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Front Microbiol 9:2161. doi: 10.3389/fmicb.2018.02161. eCollection 2018 (2018 Sep 25)Google Scholar
  17. Kenters N, Henderson G, Jeyanathan J, Kittelmann S, Janssen PH (2011) Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium. J Microbiol Methods 84(1):52–60. (Epub 2010 Oct 26)CrossRefPubMedGoogle Scholar
  18. Joch M, Mrázek J, Skřivanová E, Čermák L, Marounek M (2018) Effects of pure plant secondary metabolites on methane production, rumen fermentation and rumen bacteria populations in vitro. J Anim Physiol Anim Nutr (Berl) 102(4):869–881. (Epub 2018 Apr 29)CrossRefGoogle Scholar
  19. Kazemi-Bonchenari M, Falahati R, Poorhamdollah M, Heidari SR, Pezeshki A (2018) Essential oils improved weight gain, growth and feed efficiency of young dairy calves fed 18 or 20% crude protein starter diets. J Anim Physiol Anim Nutr (Berl) 102(3):652–661. (Epub 2018 Jan 17)CrossRefGoogle Scholar
  20. Krause DO, Russell JB (1996) How many ruminal bacteria are there? J Dairy Sci 79(8):1467–1475 (Review)CrossRefGoogle Scholar
  21. Levy B, Jami E (2018) Exploring the prokaryotic community associated with the rumen ciliate protozoa population. Front Microbiol 9:2526. (eCollection 2018)
  22. Li J, Heath IB, Bauchop T (1990) Piromyces mae and Piromycesdumbonica, two new species of uniflagellate anaerobic chitridiomycete fungi from the hindgut of the horse and elephant. Can J Bot 68:1021–1033CrossRefGoogle Scholar
  23. Ljungdahl LG (2008) The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann NY Acad Sci 1125:308–321CrossRefGoogle Scholar
  24. Namonyo S, Wagacha M, Maina S, Wambua L, Agaba M (2018) A metagenomic study of the rumen virome in domestic caprids. Arch Virol 163(12):3415–3419. (Epub 2018 Sep 15. Erratum in: Arch Virol. 2018 Oct 10)CrossRefGoogle Scholar
  25. Newbold CJ, de la Fuente G, Belanche A, Ramos-Morales E, McEwan NR (2015) The role of ciliate protozoa in the rumen. Front Microbiol 26(6):1313. (eCollection2015. Review)CrossRefGoogle Scholar
  26. Orpin GC (1976) The characterization of the rumen bacterium Eadi’s oval Magnoovum gen. nov. eadii sp. nov. Arch Microbiol 111:155–159CrossRefGoogle Scholar
  27. Orpin CG, Mann EA (1986) Neocallimastix patriciarum: new member of the Neocallimasticaceae inhabiting the sheep rumen. Trans Br Mycol Soc 86:178–181CrossRefGoogle Scholar
  28. Patra AK, Saxena J (2009) Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie Van Leeuwenhoek 96(4):363–375. (Epub 2009 Jul 7. Review)CrossRefGoogle Scholar
  29. Paynter MJ, Ewert DL, Chalupa W (1969) Some morphological types of bacteriophages in bovine rumen contents. Appl Microbiol 18(5):942–943PubMedPubMedCentralGoogle Scholar
  30. Piela P, Michałowski T, Miltko R, Szewczyk K, Sikora R, Grzesiuk E, Sikora A (2010) Can a fermentation gas mainly produced by rumen Isotrichidae ciliates be a potential source of biohydrogen and a fuel for a chemical fuel cell? J Microbiol Biotechnol 20:1092–1100CrossRefGoogle Scholar
  31. Roy A, Mandal GP, Patra AK (2017) Effects of different vegetable oils on rumen fermentation and conjugated linoleic acid concentration in vitro. Vet World 10(1):11–16. (Epub 2017 Jan 8)CrossRefGoogle Scholar
  32. Scott KP, Duncan SH, Louis P, Flint HJ (2011) Nutritional influences on the gut microbiota and the consequences for gastrointestinal health. Biochem Soc Trans 39:1073–1078CrossRefGoogle Scholar
  33. Shi W, Moon CD, Leahy SC, Kang D, Froula J, Kittelmann S, Fan C, Deutsch S, Gagic D, Seedorf H, Kelly WJ, Atua R, Sang C, Soni P, Li D, Pinares-Patiño CS, McEwan JC, Janssen PH, Chen F, Visel A, Wang Z, Attwood GT, Rubin EM (2014) Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res 24(9):1517–1525. (Epub 2014 Jun 6)CrossRefPubMedPubMedCentralGoogle Scholar
  34. Singh B, Bhat TK, Sharma OP, Kanwar SS, Rahi P, Gulati A (2012) Isolation of tannase-producing Enterobacter ludwigii GRT-1 from the rumen of migratory goats. Small Ruminant Res 102:172–176CrossRefGoogle Scholar
  35. Singh B, Gautam SK, Verma V, Kumar M, Singh B (2008) Metagenomics in animal gastrointestinal tract- potential biotechnological prospects. Anaerobe 14:138–144CrossRefGoogle Scholar
  36. Singh B, Gautam SK, Chauhan MS, Singla SK (2015) Textbook of animal biotechnology. The Energy and Resources Institute (TERI), New Delhi. ISBN-13: 978-8179933275Google Scholar
  37. Singh B, Mal G, Marotta F (2017) Designer probiotics: Paving the way to living therapeutics. Trends Biotechnol 35(8):679–682. (Epub 2017 May 5) 2017 AugCrossRefGoogle Scholar
  38. Sirohi SK, Singh N, Dagar SS, Puniya AK (2012) Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol (in press)Google Scholar
  39. Tapio I, Snelling TJ, Strozzi F, Wallace RJ (2017) The ruminal microbiome associated with methane emissions from ruminant livestock. J Anim Sci Biotechnol 19(8):7. Scholar
  40. Webb J, Theodorou MK (1988) A rumen anaerobic fungus of the genus Neocallimastix: ultrastructure of the polyflagellate zoospore and young thallus. Biosystems 21:393–401CrossRefGoogle Scholar
  41. Vibin J, Chamings A, Collier F, Klaassen M, Nelson TM, Alexandersen S (2018) Metagenomics detection and characterisation of viruses in faecal samples from Australian wild birds. Sci Rep 8(1):8686.
  42. Williams YJ, Rea SM, Popovski S, Skillman LC, Wright AD (2014) Technical note: protozoa-specific antibodies raised in sheep plasma bind to their target protozoa in the rumen. J Anim Sci 92(12):5757–5761. Scholar
  43. Williams YJ, Rea SM, Popovski S, Pimm CL, Williams AJ, Toovey AF, Skillman LC, Wright AD (2008) Reponses of sheep to a vaccination of entodinial or mixed rumen protozoal antigens to reduce rumen protozoal numbers. Br J Nutr 99(1):100–109 (Epub 2007 Aug 15)CrossRefGoogle Scholar
  44. Wubah DA, Fuller MS (1991) Studies on Caecomyces communis: morphology and development. Mycologia 83:303–310CrossRefGoogle Scholar
  45. Yutin N, Kapitonov VV, Koonin EV (2015) A new family of hybrid virophages from an animal gut metagenome. Biol Direct 25(10):19. Scholar
  46. Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci U S A 99(24):15681–15686 (Epub 2002 Nov 18)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations