Advertisement

Stem Cells and Cellular Reprogramming to Advance Livestock Industry

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 534 Downloads

Abstract

Cellular or genomic reprogramming is an interesting phenomenon in which specialized somatic cells are made to acquire pluripotency through global resetting of the genome by epigenetic modifications. The technology has provided a promising platform to develop cells for regenerative medicine, deriving oocytes or sperm from somatic cells, and genetic engineering of multicellular organisms, especially livestock species used for human health and welfare.

Highlights

  • The finally differentiated cells can be reprogrammed through epigenetic modifications of cellular genome

  • The technology has revolutionized the science of regenerative medicine or cell-based therapies

  • Livestock can be treated or engineered using stem cells.

Keywords

Genomic reprogramming Induced pluripotency Stem cells Regenerative medicine Livestock applications 

References

  1. Amilon KR, Cortes-Araya Y, Moore B, Lee S, Lillico S, Breton A, Esteves CL, Donadeu FX (2018) Generation of functional myocytes from equine induced pluripotent stem cells. Cell Reprogram 20(5):275–281.  https://doi.org/10.1089/cell.2018.0023 (Epub 2018 Sep 12)CrossRefGoogle Scholar
  2. Baigger A, Eicke D, Yuzefovych Y, Pogozhykh D, Blasczyk R, Figueiredo C (2018) Characterization of induced pluripotent stem cell-derived megakaryocyte lysates for potential regenerative applications. J Cell Mol Med 22(9):4545–4549.  https://doi.org/10.1111/jcmm.13698 (Epub 2018 Jun 12)CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bao L, He L, Chen J, Wu Z, Liao J, Rao L, Ren J, Li H, Zhu H, Qian L, Gu Y, Dai H, Xu X, Zhou J, Wang W, Cui C, Xiao L (2011) Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res 21(4):600–608.  https://doi.org/10.1038/cr.2011.6 (Epub 2011 Jan 11)CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beerens AM, Al Hadithy AF, Rots MG, Haisma HJ (2003) Protein transduction domains and their utility in gene therapy. Curr Gene Ther 3(5):486–494CrossRefGoogle Scholar
  5. Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA, Zhong C, Sakurai M, Sampaio RV, Suzuki K, Izpisua Belmonte JC, Ross PJ (2018) Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc Natl Acad Sci USA. 115(9):2090–2095.  https://doi.org/10.1073/pnas.1716161115 (Epub 2018 Feb 9)CrossRefPubMedGoogle Scholar
  6. Bortvin A, Eggan K, Skaletsky H, Akutsu H, Berry DL, Yanagimachi R, Page DC, Jaenisch R (2003) Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 130(8):1673–1680CrossRefGoogle Scholar
  7. Brehm W, Aklin B, Yamashita T, Rieser F, Trüb T, Jakob RP, Mainil-Varlet P (2006) Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthritis Cartilage 14(12):1214–1226 (Epub 2006 Jul 3)CrossRefGoogle Scholar
  8. Brehm W, Burk J, Delling U (2014) Application of stem cells for the treatment of joint disease in horses. Methods Mol Biol 1213:215–228.  https://doi.org/10.1007/978-1-4939-1453-1_18CrossRefPubMedGoogle Scholar
  9. Breton A, Sharma R, Diaz AC, Parham AG, Graham A, Neil C, Whitelaw CB, Milne E, Donadeu FX (2013) Derivation and characterization of induced pluripotent stem cells from equine fibroblasts. Stem Cells Dev. 22(4):611–621.  https://doi.org/10.1089/scd.2012.0052 (Epub 2012 Sep 28)CrossRefPubMedGoogle Scholar
  10. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de León FA, Robl JM (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280(5367):1256–1258CrossRefGoogle Scholar
  11. Deng Y, Liu Q, Luo C, Chen S, Li X, Wang C, Liu Z, Lei X, Zhang H, Sun H, Lu F, Jiang J, Shi D (2012) Generation of induced pluripotent stem cells from buffalo (Bubalus bubalis) fetal fibroblasts with buffalo defined factors. Stem Cells Dev 21(13):2485–2494.  https://doi.org/10.1089/scd.2012.0018 (Epub 2012 May 14)CrossRefPubMedGoogle Scholar
  12. Do JT, Schöler HR (2004) Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22(6):941–949CrossRefGoogle Scholar
  13. Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM (2009) Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci USA 106(27):10993–10998.  https://doi.org/10.1073/pnas.0905284106 (Epub 2009 Jun 18)CrossRefPubMedGoogle Scholar
  14. Fujishiro SH, Nakano K, Mizukami Y, Azami T, Arai Y, Matsunari H, Ishino R, Nishimura T, Watanabe M, Abe T, Furukawa Y, Umeyama K, Yamanaka S, Ema M, Nagashima H, Hanazono Y (2013) Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells Dev 22(3):473–482.  https://doi.org/10.1089/scd.2012.0173 (Epub 2012 Oct 9)CrossRefGoogle Scholar
  15. Gaustad KG, Boquest AC, Anderson BE, Gerdes AM, Collas P (2004) Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun 314(2):420–427CrossRefGoogle Scholar
  16. Genovese NJ, Domeier TL, Telugu BP, Roberts RM (2017) Enhanced development of skeletal myotubes from porcine induced pluripotent stem cells. Sci Rep 6(7):41833.  https://doi.org/10.1038/srep41833CrossRefGoogle Scholar
  17. Hansis C, Barreto G, Maltry N, Niehrs C (2004) Nuclear reprogramming of human somatic cells by xenopus egg extract requires BRG1. Curr Biol 14(16):1475–1480CrossRefGoogle Scholar
  18. Hayashi M, Kawaguchi T, Durcova-Hills G, Imai H (2017) Generation of germ cells from pluripotent stem cells in mammals. Reprod Med Biol. 17(2):107–114.  https://doi.org/10.1002/rmb2.12077 (eCollection 2018 Apr. Review)CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hellman A, Chess A (2007) Gene body-specific methylation on the active X chromosome. Science 315(5815):1141–1143CrossRefGoogle Scholar
  20. Honda A, Hirose M, Hatori M, Matoba S, Miyoshi H, Inoue K, Ogura A (2010) Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine. J Biol Chem 285(41):31362–31369.  https://doi.org/10.1074/jbc.M110.150540 (Epub 2010 Jul 29)CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ishino T, Hashimoto M, Amagasa M, Saito N, Dochi O, Kirisawa R, Kitamura H (2018) Establishment of protocol for preparation of gene-edited bovine ear-derived fibroblasts for somatic cell nuclear transplantation. Biomed Res 39(2):95–104. https://doi.org/10.2220/biomedres.39.95
  22. Jeon H, Kim JY, Choi JK, Han E, Song CL, Lee J, Cho YS (2018) Effects of the extracts from fruit and stem of Camellia japonica on induced pluripotency and wound healing. J Clin Med 7(11). pii: E449.  https://doi.org/10.3390/jcm7110449CrossRefGoogle Scholar
  23. Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293(5532):1068–10670CrossRefGoogle Scholar
  24. Kang Y, Ai Z, Duan K, Si C, Wang Y, Zheng Y, He J, Yin Y, Zhao S, Niu B, Zhu X, Liu L, Xiang L, Zhang L, Niu Y, Ji W, Li T (2018) Improving cell survival in injected embryos allows primed pluripotent stem cells to generate Chimeric Cynomolgus Monkeys. Cell Rep. 25(9):2563–2576.  https://doi.org/10.1016/j.celrep.2018.11.001CrossRefPubMedGoogle Scholar
  25. Kikyo N, Wolffe AP (2000) Reprogramming nuclei: insights from cloning, nuclear transfer and heterokaryons. J Cell Sci 113(Pt 1):11–20Google Scholar
  26. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476.  https://doi.org/10.1016/j.stem.2009.05.005 (Epub 2009 May 28. No abstract available)CrossRefGoogle Scholar
  27. Kim YM, Park YH, Lim JM, Jung H, Han JY (2017) Technical note: induction of pluripotent stem cell-like cells from chicken feather follicle cells. J Anim Sci 95(8):3479–3486.  https://doi.org/10.2527/jas.2017.1418PubMedGoogle Scholar
  28. Kraus KH, Kirker-Head C (2006) Mesenchymal stem cells and bone regeneration. Vet Surg 35(3):232–242CrossRefGoogle Scholar
  29. Kuo CH, Ying SY (2012) Advances in microRNA-mediated reprogramming technology. Stem Cells Int 2012:823709.  https://doi.org/10.1155/2012/823709 (Epub 2012 Mar 28)CrossRefGoogle Scholar
  30. Kuo CH, Ying SY (2013) MicroRNA-mediated somatic cell reprogramming. J Cell Biochem 114(2):275–281.  https://doi.org/10.1002/jcb.24385CrossRefPubMedGoogle Scholar
  31. Li W, Ding S (2010) Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends Pharmacol Sci 31(1):36–45.  https://doi.org/10.1016/j.tips.2009.10.002 (Epub 2009 Nov 4. Review)CrossRefGoogle Scholar
  32. Li G, Reinberg D (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21(2):175–186.  https://doi.org/10.1016/j.gde.2011.01.022 (Epub 2011 Feb 20. Review)CrossRefGoogle Scholar
  33. Li M, Sancho-Martinez I, Izpisua Belmonte JC (2011) Cell fate conversion by mRNA. Stem Cell Res Ther. 2(1):5.  https://doi.org/10.1186/scrt46CrossRefPubMedPubMedCentralGoogle Scholar
  34. Liu J, Balehosur D, Murray B, Kelly JM, Sumer H, Verma PJ (2012) Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology 77(2):338–346.  https://doi.org/10.1016/j.theriogenology.2011.08.006 (Epub 2011 Sep 29)CrossRefPubMedGoogle Scholar
  35. Maherali N, Hochedlinger K (2008) Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3(6):595–605.  https://doi.org/10.1016/j.stem.2008.11.008CrossRefPubMedGoogle Scholar
  36. Mallanna SK, Rizzino A (2010) Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev Biol 344(1):16–25.  https://doi.org/10.1016/j.ydbio.2010.05.014 (Epub 2010 May 15. Review)CrossRefGoogle Scholar
  37. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(Spec No 1):R47–R58CrossRefGoogle Scholar
  38. Nagata MPB, Endo K, Ogata K, Yamanaka K, Egashira J, Katafuchi N, Yamanouchi T, Matsuda H, Goto Y, Sakatani M, Hojo T, Nishizono H, Yotsushima K, Takenouchi N, Hashiyada Y, Yamashita K (2018) Live births from artificial insemination of microfluidic-sorted bovine spermatozoa characterized by trajectories correlated with fertility. Proc Natl Acad Sci USA 115(14):E3087–E3096. https://doi.org/10.1073/pnas.1717974115. Epub 2018 Mar 19CrossRefGoogle Scholar
  39. Nagy K, Sung HK, Zhang P, Laflamme S, Vincent P, Agha-Mohammadi S, Woltjen K, Monetti C, Michael IP, Smith LC, Nagy A (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev. 7(3):693–702.  https://doi.org/10.1007/s12015-011-9239-5 (Erratum. In: Stem Cell Rev. 2012 Jun; 8(2):546)CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379–391CrossRefGoogle Scholar
  41. Pereira CF, Terranova R, Ryan NK, Santos J, Morris KJ, Cui W, Merkenschlager M, Fisher AG (2008) Heterokaryon-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2. PLoS Genet 4(9):e1000170.  https://doi.org/10.1371/journal.pgen.1000170CrossRefPubMedPubMedCentralGoogle Scholar
  42. Qin M, Tai G, Collas P, Polak JM, Bishop AE (2005) Cell extract-derived differentiation of embryonic stem cells. Stem Cells 23(6):712–718CrossRefGoogle Scholar
  43. Richardson LE, Dudhia J, Clegg PD, Smith R (2007) Stem cells in veterinary medicine–attempts at regenerating equine tendon after injury. Trends Biotechnol 25(9):409–416 (Epub 2007 Aug 9. Review)CrossRefGoogle Scholar
  44. Roberts RM, Telugu BP, Ezashi T (2009) Induced pluripotent stem cells from swine (Sus scrofa): why they may prove to be important. Cell Cycle 8(19):3078–3081 (Epub 2009 Oct 21. Review)CrossRefGoogle Scholar
  45. Sandmaier SE, Nandal A, Powell A, Garrett W, Blomberg L, Donovan DM, Talbot N, Telugu BP (2015) Generation of induced pluripotent stem cells from domestic goats. Mol Reprod Dev 82(9):709–721.  https://doi.org/10.1002/mrd.22512 (Epub 2015 Jun 26)CrossRefPubMedGoogle Scholar
  46. Song H, Li H, Huang M, Xu D, Gu C, Wang Z, Dong F, Wang F (2013) Induced pluripotent stem cells from goat fibroblasts. Mol Reprod Dev 80(12):1009–1017.  https://doi.org/10.1002/mrd.22266CrossRefPubMedGoogle Scholar
  47. Song H, Li H, Huang M, Xu D, Wang Z, Wang F (2016) Big animal cloning using transgenic induced pluripotent stem cells: a case study of goat transgenic induced pluripotent stem cells. Cell Reprogram 18(1):37–47.  https://doi.org/10.1089/cell.2015.0035CrossRefPubMedGoogle Scholar
  48. Tada M, Tada T (2006) Epigenetic reprogramming of somatic genomes by electrofusion with embryonic stem cells. Methods Mol Biol 325:67–79PubMedGoogle Scholar
  49. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11(19):1553–1558CrossRefGoogle Scholar
  50. Tai D, Liu P, Gao J, Jin M, Xu T, Zuo Y, Liang H, Liu D (2015) Generation of Arbas Cashmere Goat induced pluripotent stem cells through fibroblast reprogramming. Cell Reprogram. 17(4):297–305.  https://doi.org/10.1089/cell.2014.0107CrossRefPubMedGoogle Scholar
  51. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676 (Epub 2006 Aug 10)CrossRefGoogle Scholar
  52. Tancos Z, Nemes C, Polgar Z, Gocza E, Daniel N, Stout TA, Maraghechi P, Pirity MK, Osteil P, Tapponnier Y, Markossian S, Godet M, Afanassieff M, Bosze Z, Duranthon V, Savatier P, Dinnyes A (2012) Generation of rabbit pluripotent stem cell lines. Theriogenology 78(8):1774–1786.  https://doi.org/10.1016/j.theriogenology.2012.06.017 (Epub 2012 Aug 24. Review)CrossRefGoogle Scholar
  53. Telugu BP, Ezashi T, Roberts RM (2010) Porcine induced pluripotent stem cells analogous to naïve and primed embryonic stem cells of the mouse. Int J Dev Biol 54(11–12):1703–1711.  https://doi.org/10.1387/ijdb.103200btCrossRefPubMedGoogle Scholar
  54. Vajta G, Lewis IM, Hyttel P, Thouas GA, Trounson AO (2001) Somatic cell cloning without micromanipulators. Cloning. 3(2):89–95CrossRefGoogle Scholar
  55. Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P (2001) Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292(5517):740–743CrossRefGoogle Scholar
  56. Webb RL, Gallegos-Cárdenas A, Miller CN, Solomotis NJ, Liu HX, West FD, Stice SL (2017) Pig induced pluripotent stem cell-derived neural rosettes parallel human differentiation into sensory neural subtypes. Cell Reprogram 19(2):88–94.  https://doi.org/10.1089/cell.2016.0057CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wilke MM, Nydam DV, Nixon AJ (2007) Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res 25(7):913–925CrossRefGoogle Scholar
  58. Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, Zhu H, Teng X, Cheng L, Xiao L (2009) Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1(1):46–54.  https://doi.org/10.1093/jmcb/mjp003 (Epub 2009 Jun 3)CrossRefPubMedGoogle Scholar
  59. Yadav PS, Singh RK, Singh B (2012) Fetal stem cells in farm animals: applications in health and production. Agric Res 1:67–77CrossRefGoogle Scholar
  60. Yang CS, Lopez CG, Rana TM (2011) Discovery of nonsteroidal anti-inflammatory drug and anticancer drug enhancing reprogramming and induced pluripotent stem cell generation. Stem Cells 29(10):1528–1536.  https://doi.org/10.1002/stem.717CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Wang X, Wang L, Zeng F, Zhou Q (2010) Viable fertile mice generated from fully pluripotent iPS cells derived from adult somatic cells. Stem Cell Rev 6(3):390–397.  https://doi.org/10.1007/s12015-010-9160-3CrossRefPubMedGoogle Scholar
  62. Zhao L, Wang Z, Zhang J, Yang J, Gao X, Wu B, Zhao G, Bao S, Hu S, Liu P, Li X (2017) Characterization of the single-cell derived bovine induced pluripotent stem cells. Tissue Cell 49(5):521–527.  https://doi.org/10.1016/j.tice.2017.05.005 (Epub 2017 May 22)CrossRefPubMedGoogle Scholar
  63. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Schöler HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384.  https://doi.org/10.1016/j.stem.2009.04.005 (Epub 2009 Apr 23. No abstract available. Erratum in: Cell Stem Cell. 2009 Jun 5;4(6):581)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations