Advertisement

Reproduction Biotechnology in Equines

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 542 Downloads

Abstract

The assisted reproduction in equines has progressed to a large extent during recent two decades. Scarcity of ovaries and oocytes, lack of interest from customary equine breeders, and preference to automobiles for transportation are the main reason for tardy progress in equine ARTs. In addition, failure of mares to respond to superovulation, meager success of sperm capacitation in vitro, IVF and embryo production, and less number of laboratories working in this area are the causes of low progress. Improving oocyte maturation in vitro, IVF and enhancing developmental competence of in vitro produced embryos, multiplying selected progeny-tested studs and developing cell therapies for equine injuries are the prospective areas.

Highlights

  • Equines are a group of different species domesticated companion animals ever since the human civilization

  • Equines are diverse multipurpose livestock species.

Keywords

Equines Companion animals Equine reproduction Semen cryopreservation Embryo transfer 

References

  1. Aguiar C, Therrien J, Lemire P, Segura M, Smith LC, Theoret CL (2016) Differentiation of equine induced pluripotent stem cells into a keratinocyte lineage. Equine Vet J 48(3):338–345.  https://doi.org/10.1111/evj.12438 (Epub 2015 May 29)PubMedCrossRefGoogle Scholar
  2. Al-Essawe EM, Johannisson A, Wulf M, Aurich C, Morrell JM (2018a) Improved cryosurvival of stallion spermatozoa after colloid centrifugation is independent of the addition of seminal plasma. Cryobiology 81:145–152.  https://doi.org/10.1016/j.cryobiol.2018.01.009 (Epub 2018 Feb 15)PubMedCrossRefGoogle Scholar
  3. Al-Essawe EM, Wallgren M, Wulf M, Aurich C, Macías-García B, Sjunnesson Y, Morrell JM (2018b) Seminal plasma influences the fertilizing potential of cryopreserved stallion sperm. Theriogenology 15(115):99–107.  https://doi.org/10.1016/j.theriogenology.2018.04.021CrossRefGoogle Scholar
  4. Alvarenga MA, Papa FO, Ramires Neto C (2016) Advances in stallion semen cryopreservation. Vet Clin North Am Equine Pract 32(3):521–530.  https://doi.org/10.1016/j.cveq.2016.08.003 (Epub 2016 Oct 8. Review)PubMedGoogle Scholar
  5. Amilon KR, Cortes-Araya Y, Moore B, Lee S, Lillico S, Breton A, Esteves CL, Donadeu FX (2018) Generation of functional myocytes from equine induced pluripotent stem cells. Cell Reprogram.  https://doi.org/10.1089/cell.2018.0023 (Epub ahead of print)PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aspri M, Leni G, Galaverna G, Papademas P (2018) Bioactive properties of fermented donkey milk, before and after in vitro simulated gastrointestinal digestion. Food Chem 268:476–484.  https://doi.org/10.1016/j.foodchem.2018.06.119 (Epub 2018 Jun 23)PubMedCrossRefGoogle Scholar
  7. Baird A, Lindsay T, Everett A, Iyemere V, Paterson YZ, McClellan A, Henson FMD, Guest DJ (2018) Osteoblast differentiation of equine induced pluripotent stem cells. Biol Open. 7(5). pii: bio033514.  https://doi.org/10.1242/bio.033514PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bavin EP, Smith O, Baird AE, Smith LC, Guest DJ (2015) Equine induced pluripotent stem cells have a reduced tendon differentiation capacity compared to embryonic stem cells. Front Vet Sci 2:55.  https://doi.org/10.3389/fvets.2015.00055 (eCollection 2015)
  9. Belaunzaran X, Bessa RJ, Lavín P, Mantecón AR, Kramer JK, Aldai N (2015) Horse-meat for human consumption—current research and future opportunities. Meat Sci 108:74–81.  https://doi.org/10.1016/j.meatsci.2015.05.006 (Epub 2015 May 14. Review)PubMedCrossRefGoogle Scholar
  10. Breton A, Sharma R, Diaz AC, Parham AG, Graham A, Neil C, Whitelaw CB, Milne E, Donadeu FX (2013) Derivation and characterization of induced pluripotent stem cells from equine fibroblasts. Stem Cells Dev 22(4):611–21.  https://doi.org/10.1089/scd.2012.0052 (Epub 2012 Sep 28)PubMedCrossRefGoogle Scholar
  11. Carnevale EM (2016) Advances in collection, transport and maturation of equine oocytes for assisted reproductive techniques. Vet Clin North Am Equine Pract 32(3):379–399.  https://doi.org/10.1016/j.cveq.2016.07.002 (Epub 2016 Oct 8. Review)PubMedGoogle Scholar
  12. Canesin HS, Brom-de-Luna JG, Choi YH, Ortiz I, Diaw M, Hinrichs K (2017) Blastocyst development after intracytoplasmic sperm injection of equine oocytes vitrified at the germinal-vesicle stage. Cryobiology 75:52–59.  https://doi.org/10.1016/j.cryobiol.2017.02.004PubMedCrossRefGoogle Scholar
  13. Canesin HS, Brom-de-Luna JG, Choi YH, Pereira AM, Macedo GG, Hinrichs K (2018) Vitrification of germinal-vesicle stage equine oocytes: Effect of cryoprotectant exposure time on in-vitro embryo production. Cryobiology 81:185–191.  https://doi.org/10.1016/j.cryobiol.2018.01.001CrossRefGoogle Scholar
  14. Choi YH, Okada Y, Hochi S, Braun J, Sato K, Oguri N (1994) In vitro fertilization rate of horse oocytes with partially removed zonae. Theriogenology 42(5):795–802PubMedCrossRefGoogle Scholar
  15. Choi YH, Ritthaler J, Hinrichs K (2014) Production of a mitochondrial-DNA identical cloned foal using oocytes recovered from immature follicles of selected mares. Theriogenology 82(3):411–417.  https://doi.org/10.1016/j.theriogenology.2014.04.021 (Epub 2014 May 5)PubMedCrossRefGoogle Scholar
  16. Choi YH, Love CC, Varner DD, Hinrichs K (2006) Equine blastocyst development after intracytoplasmic injection of sperm subjected to two freeze-thaw cycles. Theriogenology 65(4):808–819 (Epub 2005 Aug 10)PubMedCrossRefGoogle Scholar
  17. Choi YH, Varner DD, Love CC, Hartman DL, Hinrichs K (2011) Production of live foals via intracytoplasmic injection of lyophilized sperm and sperm extract in the horse. Reproduction 142(4):529–538.  https://doi.org/10.1530/REP-11-0145 (Epub 2011 Aug 16)PubMedCrossRefGoogle Scholar
  18. Choi YH, Norris JD, Velez IC, Jacobson CC, Hartman DL, Hinrichs K (2013) A viable foal obtained by equine somatic cell nuclear transfer using oocytes recovered from immature follicles of live mares. Theriogenology 79(5):791.e1–796.e1.  https://doi.org/10.1016/j.theriogenology.2012.12.005 (Epub 2013 Jan 11)CrossRefGoogle Scholar
  19. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de León FA, Robl JM (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256–1258PubMedPubMedCentralCrossRefGoogle Scholar
  20. Coli A, Nocchi F, Lamanna R, Iorio M, Lapi S, Urciuoli P, Scatena F, Giannessi E, Stornelli MR, Passeri S (2010) Isolation and characterization of equine amnion mesenchymal stem cells. Cell Biol Int Rep 18(1):e00011.  https://doi.org/10.1042/cbr20110004CrossRefGoogle Scholar
  21. Colleoni S, Barbacini S, Necchi D, Duchi R, Lazzari G, Galli C (2007) Application of ovum pick-up, intracytoplasmic sperm injection and embryo culture in equine practice. Proc Am Assoc Equine Pract 53:554–559Google Scholar
  22. Cuervo-Arango J, Claes AN, Stout TA (2018) Effect of embryo transfer technique on the likelihood of pregnancy in the mare: a comparison of conventional and Wilsher’s forceps-assisted transfer. Vet Rec 183(10):323.  https://doi.org/10.1136/vr.104808 (Epub 2018 May 24)PubMedCrossRefGoogle Scholar
  23. de Oliveira JV, Oliveira PV, Melo e Oña CM, Guasti PN, Monteiro GA, Sancler da Silva YF, Papa Pde M, Alvarenga MA, Dell’Aqua Junior JA, Papa FO (2016) Strategies to improve the fertility of fresh and frozen donkey semen. Theriogenology 85(7):1267–1273.  https://doi.org/10.1016/j.theriogenology.2015.12.010(Epub 2015 Dec 23)
  24. Dell’Aquila ME, De Felici M, Massari S, Maritato F, Minoia P (1999) Effects of fetuin on zona pellucida hardening and fertilizability of equine oocytes matured in vitro. Biol Reprod 61(2):533–540PubMedCrossRefGoogle Scholar
  25. Desmarais JA, Demers SP, Suzuki J Jr, Laflamme S, Vincent P, Laverty S, Smith LC (2011) Trophoblast stem cell marker gene expression in inner cell mass-derived cells from parthenogenetic equine embryos. Reproduction 141(3):321–332.  https://doi.org/10.1530/REP-09-0536 (Epub 2011 Jan 5)PubMedCrossRefGoogle Scholar
  26. Diaz-Jimenez M, Dorado J, Ortiz I, Consuegra C, Pereira B, Gonzalez-De Cara CA, Aguilera R, Mari G, Mislei B, Love CC, Hidalgo M (2018a) Cryopreservation of donkey sperm using non-permeable cryoprotectants. Anim Reprod Sci 189:103–109.  https://doi.org/10.1016/j.anireprosci.2017.12.013PubMedCrossRefGoogle Scholar
  27. Diaz-Jimenez M, Dorado J, Pereira B, Ortiz I, Consuegra C, Bottrel M, Ortiz E, Hidalgo M (2018b) Vitrification in straws conserves motility features better than spheres in donkey sperm. Reprod Domest Anim 53(Suppl 2):56–58.  https://doi.org/10.1111/rda.13256PubMedCrossRefGoogle Scholar
  28. Dorado J, Acha D, Gálvez MJ, Ortiz I, Carrasco JJ, Díaz B, Gómez-Arrones V, Calero-Carretero R, Hidalgo M (2013) Sperm motility patterns in Andalusian donkey (Equus asinus) semen: effects of body weight, age, and semen quality. Theriogenology 79(7):1100–1109.  https://doi.org/10.1016/j.theriogenology.2013.02.006 (Epub 2013 Mar 6)PubMedCrossRefGoogle Scholar
  29. Foss R, Ortis H, Hinrichs K (2013) Effect of potential oocyte transport protocols on blastocyst rates after intracytoplasmic sperm injection in the horse. Equine Vet J 45:39–43.  https://doi.org/10.1111/evj.12159CrossRefGoogle Scholar
  30. Fulka J Jr, Okolski A (1981) Culture of horse oocytes in vitro. J Reprod Fertil 61:213–215PubMedCrossRefGoogle Scholar
  31. Galli C, Crotti G, Notari C, Turini P, Duchi R, Lazzari G (2001) Embryo production by ovum pick up from live donors. Theriogenology 55:1341–1357PubMedCrossRefGoogle Scholar
  32. Galli C, Lagutina I, Crotti G, Colleoni S, Turini P, Ponderato N, Duchi R, Lazzari G (2003a) Pregnancy: a cloned horse born to its dam twin. Nature 424:635PubMedCrossRefGoogle Scholar
  33. Galli C, Lagutina I, Crotti G, Colleoni S, Turini P, Ponderato N, Duchi R, Lazzari G (2003b) Pregnancy: a cloned horse born to its dam twin. Nature 424:635PubMedCrossRefGoogle Scholar
  34. Gambini A, Maserati M (2017) A journey through horse cloning. Reprod Fertil Dev 30(1):8–17.  https://doi.org/10.1071/RD17374 (Review)PubMedCrossRefGoogle Scholar
  35. Hinrichs K (2018) Assisted reproductive techniques in mares. Reprod Domest Anim 53(Suppl 2):4–13.  https://doi.org/10.1111/rda.13259PubMedCrossRefGoogle Scholar
  36. Hinrichs K, Choi YH, Love LB, Varner DD, Love CC, Walckenaer BE (2005) Chromatin configuration within the germinal vesicle of horse oocytes: changes post mortem and relationship to meiotic and developmental competence. Biol Reprod 72:1142–1150.  https://doi.org/10.1095/biolreprod.104.036012PubMedCrossRefGoogle Scholar
  37. Hinrichs K, Choi YH, Love CC, Chung YG, Varner DD (2006) Production of horse foals via direct injection of roscovitine-treated donor cells and activation by injection of sperm extract. Reproduction 131:1063–1072PubMedCrossRefGoogle Scholar
  38. Hinrichs K, Choi YH, Varner DD, Hartman DL (2007) Production of cloned horse foals using roscovitine-treated donor cells and activation with sperm extract and/or ionomycin. Reproduction 134:319–325PubMedCrossRefGoogle Scholar
  39. Iacono E, Pascucci L, Rossi B, Bazzucchi C, Lanci A, Ceccoli M, Merlo B (2017) Ultrastructural characteristics and immune profile of equine MSCs from fetal adnexa. Reproduction 154(4):509–519.  https://doi.org/10.1530/REP-17-0032PubMedCrossRefGoogle Scholar
  40. Kozlowski CP, Clawitter HL, Thier T, Fischer MT, Asa CS (2018) Characterization of estrous cycles and pregnancy in Somali wild asses (Equus africanus somaliensis) through fecal hormone analyses. Zoo Biol 37(1):35–39.  https://doi.org/10.1002/zoo.21397PubMedCrossRefGoogle Scholar
  41. Jacobson CC, Choi YH, Hayden SS, Hinrichs K (2010) Recovery of mare oocytes on a fixed biweekly schedule, and resulting blastocyst formation after intracytoplasmic sperm injection. Theriogenology 73:1116–1126.  https://doi.org/10.1016/j.theriogenology.2010.01.013PubMedCrossRefGoogle Scholar
  42. Lagutina I, Lazzari G, Duchi R, Colleoni S, Ponderato N, Turini P, Crotti G, Galli C (2005) Somatic cell nuclear transfer in horses: effect of oocyte morphology, embryo reconstruction method and donor cell type. Reproduction 130:559–567PubMedCrossRefGoogle Scholar
  43. Lee W, Song K, Lee I, Shin H, Lee BC, Yeon S, Jang G (2015) Cloned foal derived from in vivo matured horse oocytes aspirated by the short disposable needle system. J Vet Sci 16(4):509–516.  https://doi.org/10.4142/jvs.2015.16.4.509PubMedPubMedCentralCrossRefGoogle Scholar
  44. Leemans B, Gadella BM, Stout TA, De Schauwer C, Nelis H, Hoogewijs M, Van Soom A (2016) Why doesn’t conventional IVF work in the horse? The equine oviduct as a microenvironment for capacitation/fertilization. Reproduction 152(6):R233–R245 (Epub 2016 Sep 20. Review)PubMedCrossRefGoogle Scholar
  45. Lepage SI, Nagy K, Sung HK, Kandel RA, Nagy A, Koch TG (2016) Generation, characterization, and multilineage potency of mesenchymal-like progenitors derived from equine induced pluripotent stem cells. Stem Cells Dev. 25(1):80–89.  https://doi.org/10.1089/scd.2014.0409 (Epub 2015 Nov 5)PubMedCrossRefGoogle Scholar
  46. Li L, Liu X, Guo H (2017) The nutritional ingredients and antioxidant activity of donkey milk and donkey milk powder. Food Sci Biotechnol 27(2):393–400.  https://doi.org/10.1007/s10068-017-0264-2 (eCollection 2018 Apr)
  47. Li X, Zhou SG, Imreh MP, Ahrlund-Richter L, Allen WR (2006) Horse embryonic stem cell lines from the proliferation of inner cell mass cells. Stem Cells Dev. 15(4):523–531PubMedCrossRefGoogle Scholar
  48. Liu LL, Fang C, Liu WJ (2018) Identification on novel locus of dairy traits of Kazakh horse in Xinjiang. Gene 30(677):105–110.  https://doi.org/10.1016/j.gene.2018.07.009 (Epub 2018 Jul 3)CrossRefGoogle Scholar
  49. Lorenzo JM, Munekata PES, Campagnol PCB, Zhu Z, Alpas H, Barba FJ, Tomasevic I (2017) Technological aspects of horse meat products—a review. Food Res Int 102:176–183.  https://doi.org/10.1016/j.foodres.2017.09.094 (Epub 2017 Sep 30. Review)PubMedCrossRefGoogle Scholar
  50. Maia L, de Moraes CN, Dias MC, Martinez JB, Caballol AO, Testoni G, de Queiroz CM, Peña RD, Landim-Alvarenga FC, de Oliveira E (2017) A proteomic study of mesenchymal stem cells from equine umbilical cord. Theriogenology 15(100):8–15.  https://doi.org/10.1016/j.theriogenology.2017.05.015CrossRefGoogle Scholar
  51. Morris LHA (2018) The development of in vitro embryo production in the horse. Equine Vet J 50(6):712–720.  https://doi.org/10.1111/evj.12839 (Epub 2018 May 25. Review)PubMedCrossRefGoogle Scholar
  52. Nagy K, Nagy A (2015) Derivation of equine-induced pluripotent stem cell lines using a piggyBac transposon delivery system and temporal control of transgene expression. Methods Mol Biol 1330:79–88.  https://doi.org/10.1007/978-1-4939-2848-4_8PubMedCrossRefGoogle Scholar
  53. Nagy K, Sung HK, Zhang P, Laflamme S, Vincent P, Agha-Mohammadi S, Woltjen K, Monetti C, Michael IP, Smith LC, Nagy A (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev 7(3):693–702.  https://doi.org/10.1007/s12015-011-9239-5 (Erratum in: Stem Cell Rev. 2012 Jun; 8(2):546)PubMedCrossRefGoogle Scholar
  54. Olivera R, Moro LN, Jordan R, Luzzani C, Miriuka S, Radrizzani M, Donadeu FX, Vichera G (2016) In vitro and in vivo development of horse cloned embryos generated with iPSCs, mesenchymal stromal cells and fetal or adult fibroblasts as nuclear donors. PLoS One 11(10):e0164049.  https://doi.org/10.1371/journal.pone.0164049 (eCollection 2016)PubMedPubMedCentralCrossRefGoogle Scholar
  55. Olivera R, Moro LN, Jordan R, Pallarols N, Guglielminetti A, Luzzani C, Miriuka SG, Vichera G (2018) Bone marrow mesenchymal stem cells as nuclear donors improve viability and health of cloned horses. Stem Cells Cloning 11:13–22.  https://doi.org/10.2147/sccaa.s151763 (eCollection 2018)Google Scholar
  56. Ortiz-Escribano N, Bogado Pascottini O, Woelders H, Vandenberghe L, De Schauwer C, Govaere J, Van den Abbeel E, Vullers T, Ververs C, Roels K, Van De Velde M, Van Soom A, Smits K (2018) An improved vitrification protocol for equine immature oocytes, resulting in a first live foal. Equine Vet J 50(3):391–397.  https://doi.org/10.1111/evj.12747 (Epub 2017 Sep 21)PubMedCrossRefGoogle Scholar
  57. Ortiz-Escribano N, Bogado Pascottini O, Woelders H, Vandenberghe L, De Schauwer C, Govaere J, Van den Abbeel E, Vullers T, Ververs C, Roels K, Van De Velde M, Van Soom A, Smits K (2017) An improved vitrification protocol for equine immature oocytes, resulting in a first live foal. Equine Vet J.  https://doi.org/10.1111/evj.12747PubMedCrossRefGoogle Scholar
  58. Palmer E, Duchamp G, Bezard J, Magistrini M, King WA, Bousquet D, Betteridge KJ (1987) Non-surgical recovery of follicular fluid and oocytes of mares. J Reprod Fertil Suppl 35:689–690Google Scholar
  59. Palmer E, Bézard J, Magistrini M, Duchamp G (1991) In vitro fertilization in the horse. A retrospective study. J Reprod Fertil Suppl 44:375–384Google Scholar
  60. Paris DB, Stout TA (2010) Equine embryos and embryonic stem cells: defining reliable markers of pluripotency. Theriogenology 74(4):516–524.  https://doi.org/10.1016/j.theriogenology.2009.11.020 (Epub 2010 Jan 13. Review)PubMedCrossRefGoogle Scholar
  61. Polejaeva IA, Chen SH, Vaught TD, Page RL, Mullins J, Ball S, Dai Y, Boone J, Walker S, Ayares DL, Colman A, Campbell KHS (2000) Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:86–90PubMedCrossRefGoogle Scholar
  62. Riera FL, Roldan JE, Gomez J, Hinrichs K (2016) Factors affecting the efficiency of foal production in a commercial oocyte transfer program. Theriogenology 85:1053–1062.  https://doi.org/10.1016/j.theriogenology.2015.11.016PubMedCrossRefGoogle Scholar
  63. Pozor MA, Sheppard B, Hinrichs K, Kelleman AA, Macpherson ML, Runcan E, Choi YH, Diaw M, Mathews PM (2016) Placental abnormalities in equine pregnancies generated by SCNT from one donor horse. Theriogenology 86(6):1573–1582.  https://doi.org/10.1016/j.theriogenology.2016.05.017 (Epub 2016 May 26)PubMedCrossRefGoogle Scholar
  64. Pukazhenthi BS, Johnson A, Guthrie HD, Songsasen N, Padilla LR, Wolfe BA, Coutinho da Silva M, Alvarenga MA, Wildt DE (2014) Improved sperm cryosurvival in diluents containing amides versus glycerol in the Przewalski’s horse (Equus ferus przewalskii). Cryobiology 68(2):205–214.  https://doi.org/10.1016/j.cryobiol.2014.01.013 (Epub 2014 Feb 6)PubMedCrossRefGoogle Scholar
  65. Roels K, Smits K, Ververs C, Govaere J, D’Herde K, Van Soom A (2018) Blastocyst production after intracytoplasmic sperm injection with semen from a stallion with testicular degeneration. Reprod Domest Anim 53(3):814–817.  https://doi.org/10.1111/rda.13153 (Epub 2018 Mar 1)PubMedPubMedCentralCrossRefGoogle Scholar
  66. Rota A, Panzani D, Sabatini C, Camillo F (2012) Donkey jack (Equus asinus) semen cryopreservation: studies of seminal parameters, post breeding inflammatory response, and fertility in donkey jennies. Theriogenology 78(8):1846–1854.  https://doi.org/10.1016/j.theriogenology.2012.07.015 (Epub 2012 Sep 12)PubMedCrossRefGoogle Scholar
  67. Saito S, Ugai H, Sawai K, Yamamoto Y, Minamihashi A, Kurosaka K, Kobayashi Y, Murata T, Obata Y, Yokoyama K (2002) Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro. FEBS Lett 531(3):389–396PubMedCrossRefGoogle Scholar
  68. Samper J, Morris L, Plough T (2012) The use of sex-sorted stallion semen in embryo transfer programs J Equine Vet Sci 32:387–389Google Scholar
  69. Sessions-Bresnahan DR, Graham JK, Carnevale EM (2014) Validation of a heterologous fertilization assay and comparison of fertilization rates of equine oocytes using in vitro fertilization, perivitelline, and intracytoplasmic sperm injections. Theriogenology 82(2):274–282.  https://doi.org/10.1016/j.theriogenology.2014.04.002 (Epub 2014 Apr 16)PubMedCrossRefGoogle Scholar
  70. Sharma R, Livesey MR, Wyllie DJ, Proudfoot C, Whitelaw CB, Hay DC, Donadeu FX (2014) Generation of functional neurons from feeder-free, keratinocyte-derived equine induced pluripotent stem cells. Stem Cells Dev. 23(13):1524–1534.  https://doi.org/10.1089/scd.2013.0565 (Epub 2014 Mar 25)PubMedCrossRefGoogle Scholar
  71. Smits K, Govaere J, Hoogewijs M, Piepers S, Van Soom A (2012) A pilot comparison of laser-assisted vs piezo drill ICSI for the in vitro production of horse embryos. Reprod Domest Anim 47(1):e1–e3.  https://doi.org/10.1111/j.1439-0531.2011.01814.x (Epub 2011 Sep 24)PubMedCrossRefGoogle Scholar
  72. Squires EL (2016) Breakthroughs in equine embryo cryopreservation. Vet Clin North Am Equine Pract 32(3):415–424.  https://doi.org/10.1016/j.cveq.2016.07.009 (Epub 2016 Oct 8. Review)PubMedGoogle Scholar
  73. Violini S, Ramelli P, Pisani LF, Gorni C, Mariani P (2009) Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biol 22(10):29.  https://doi.org/10.1186/1471-2121-10-29CrossRefGoogle Scholar
  74. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813PubMedCrossRefGoogle Scholar
  75. Woods GL, White KL, Vanderwall DK, Li GP, Aston KI, Bunch TD, Meerdo LN, Pate BJ (2003) A mule cloned from fetal cells by nuclear transfer. Science 301:1063PubMedCrossRefGoogle Scholar
  76. Zhang JJ, Boyle MS, Allen WR, Galli C (1989) Recent studies on in vivo fertilization of in vitro matured horse oocytes. Equine Vet J. 8 (Suppl.):101–104CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations