Advertisement

Reproduction Biotechnology in Camelids

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter

Abstract

Over the past three decades, similar to equine industry, various reproduction biotechniques, viz. artificial insemination, in vitro production of embryos, and nuclear transfer cloning, are developed for camelids. Inadequate understanding of reproduction physiology, incomplete genetic cataloguing of native genotypes, and lack of oocyte and proven embryo banks are the challenges in fully utilizing the reproduction potential of camels. This chapter presents an overview of advances and the bottlenecks of assisted reproduction technologies applied to camelids. Prospects of conservation of diversity of the species are discussed.

Highlights
  • Camels have unique evolutionary adaptation to hard agroclimatic conditions

  • Camel is turning from a beast of burden to an important farm animal with multiple benefits

  • Only a few laboratories are working on reproduction expansion and biodiversity conservation of the species.

Keywords

Camels Camelid diversity Reproduction biotechnology Camel semen Embryo production 

References

  1. Abraham MC, Verdier K, Båge R, Morrell JM (2017) Semen collection methods in alpacas. Vet Rec 180(25):613–614.  https://doi.org/10.1136/vr.104074 (Review)PubMedCrossRefGoogle Scholar
  2. Aller JF, Rebuffi GE, Cancino AK, Alberio RH (2002) Successful transfer of vitrified Ilama (Lama glama) embryos. Anim Reprod Sci 73:121–127PubMedCrossRefGoogle Scholar
  3. Almathen F, Charruau P, Mohandesan E, Mwacharo JM, Orozco-terWengel P, Pitt D, Abdussamad AM, Uerpmann M, Uerpmann HP, De Cupere B, Magee P, Alnaqeeb MA, Salim B, Raziq A, Dessie T, Abdelhadi OM, Banabazi MH, Al-Eknah M, Walzer C, Faye B, Hofreiter M, Peters J, Hanotte O, Burger PA (2016) Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary. Proc Natl Acad Sci U S A 113(24):6707–6712.  https://doi.org/10.1073/pnas.1519508113 (Epub 2016 May 9)PubMedPubMedCentralCrossRefGoogle Scholar
  4. Boujenane I, El Khattaby N, Laghouaouta H, Badaoui B, Piro M (2019) Morphological diversity of female camel (Camelus dromedarius) populations in Morocco. Trop Anim Health Prod.  https://doi.org/10.1007/s11250-019-01813-5 (Epub ahead of print)PubMedCrossRefGoogle Scholar
  5. Bravo PW, Skidmore JA, Zhao XX (2000) Reproductive aspects and storage of semen in camelidae. Anim Reprod Sci 62(1–3):173–193PubMedCrossRefGoogle Scholar
  6. Deen A, Vyas S, Sahani MS (2003) Semen collection, cryopreservation and artificial insemination in the dromedary camel. Anim Reprod Sci 77(3–4):223–233PubMedCrossRefGoogle Scholar
  7. El-Bahrawy K, Rateb S, Khalifa M, Monaco D, Lacalandra G (2017) Physical and kinematic properties of cryopreserved camel sperm after elimination of semen viscosity by different techniques. Anim Reprod Sci 187:100–108.  https://doi.org/10.1016/j.anireprosci.2017.10.011 (Epub 2017 Oct 31)PubMedCrossRefGoogle Scholar
  8. Elliot FI (1961) Artificial insemination of Bactrian camel (Camelus bactrianus). Int Zoo Year Book 3:94Google Scholar
  9. Fitak RR, Mohandesan E, Corander J, Burger PA (2016) The de novo genome assembly and annotation of a female domestic dromedary of North African origin. Mol Ecol Resour 16(1):314–324.  https://doi.org/10.1111/1755-0998.12443 (Epub 2015 Jul 24)PubMedCrossRefGoogle Scholar
  10. Harrison JA (1979) Revision of the Camelidae (Artiodactyla, Tylopoda) and description of the new genus Alforjas. Paleontol Contrib 95:1–27 (University of Kansas)Google Scholar
  11. Herrid M, Billah M, Malo C, Skidmore JA (2016) Optimization of a vitrification protocol for hatched blastocysts from the dromedary camel (Camelus dromedarius). Theriogenology 85(4):585–590.  https://doi.org/10.1016/j.theriogenology.2015.09.048 (Epub 2015 Oct 24)PubMedCrossRefGoogle Scholar
  12. Heintzman PD, Zazula GD, Cahill JA, Reyes AV, MacPhee RD, Shapiro B (2015) Genomic data from extinct North American camelops revise camel evolutionary history. Mol Biol Evol 32(9):2433–2440.  https://doi.org/10.1093/molbev/msv128PubMedCrossRefGoogle Scholar
  13. Herrid M, Vajta G, Skidmore JA (2017) Current status and future direction of cryopreservation of camelid embryos. Theriogenology 89:20–25.  https://doi.org/10.1016/j.theriogenology.2016.10.005 (Epub 2016 Oct 13, Review)PubMedCrossRefGoogle Scholar
  14. Khatir H, Anouassi A (2006) The first dromedary (Camelus dromedarius) offspring obtained from in vitro matured, in vitro fertilized and in vitro cultured abattoir-derived oocytes. Theriogenology 65(9):1727–1736 (Epub 2005 Nov 2)PubMedCrossRefGoogle Scholar
  15. Khatir H, Anouassi A (2008) Preliminary assessment of somatic cell nuclear transfer in the dromedary (Camelus dromedarius). Theriogenology 70(9):1471–7147. https://doi.org/10.1016/j.theriogenology.2008.06.094PubMedCrossRefGoogle Scholar
  16. Mal G, Vyas S, Srinivasan A, Patil NV, Pathak KM (2016) Studies on liquefaction time and proteins involved in the improvement of seminal characteristics in dromedary Camels (Camelus dromedarius). Scientifica (Cairo) 2016:4659358.  https://doi.org/10.1155/2016/4659358 (Epub 2016 Feb 18)CrossRefGoogle Scholar
  17. Malo C, Crichton EG, Skidmore JA (2017) Optimization of the cryopreservation of dromedary camel semen: cryoprotectants and their concentration and equilibration times. Cryobiology 74:141–147. https://doi.org/10.1016/j.cryobiol.2016.11.001 (Epub 2016 Nov 3)PubMedCrossRefGoogle Scholar
  18. Manjunatha BM, Al-Hosni A, Al-Bulushi S (2019) Simplified superovulation protocols in dromedary camels (Camelus dromedarius). Theriogenology 1(126):214–221.  https://doi.org/10.1016/j.theriogenology.2018.12.006 (Epub 2018 Dec 10)CrossRefGoogle Scholar
  19. Niasari-Naslaji A, Mosaferi S, Bahmani N, Gerami A, Gharahdaghi AA, Abarghani A, Ghanbari A (2007) Semen cryopreservation in Bactrian camel (Camelus bactrianus) using SHOTOR diluent: effects of cooling rates and glycerol concentrations. Theriogenology 68(4):618–625 (Epub 2007 Jun 22)PubMedCrossRefGoogle Scholar
  20. Niasari-Naslaji A, Mosaferi S, Bahmani N, Gharahdaghi AA, Abarghani A, Ghanbari A, Gerami A (2006) Effectiveness of a tris-based extender (SHOTOR diluent) for the preservation of Bactrian camel (Camelus bactrianus) semen. Cryobiology 53(1):12–21 (Epub 2006 May 2)PubMedCrossRefGoogle Scholar
  21. Nowshari MA, Ali SA, Saleem S (2005) Offspring resulting from transfer of cryopreserved embryos in camel (Camelus dromedarius). Theriogenology 63(9):2513–2522 (Epub 2004 Dec 10)PubMedCrossRefGoogle Scholar
  22. Ruvinskiy D, Larkin DM, Farré M (2019) A near chromosome assembly of the dromedary camel genome. Front Genet 10:32.  https://doi.org/10.3389/fgene.2019.00032 (eCollection 2019)
  23. Saadeldin IM, Swelum AA, Elsafadi M, Mahmood A, Alfayez M, Alowaimer AN (2018) Cumulus cells of camel (Camelus dromedarius) antral follicles are multipotent stem cells. Theriogenology 15(118):233–242.  https://doi.org/10.1016/j.theriogenology.2018.06.009 (Epub 2018 Jun 19)CrossRefGoogle Scholar
  24. Singh B, Chauhan MS, Singla SK, Gautam SK, Verma V, Manik RS, Singh AK, Sodhi M, Mukesh M (2009) Reproductive biotechniques in buffaloes (Bubalus bubalis): status, prospects and challenges. Reprod Fertil Dev 21(4):499–510.  https://doi.org/10.1071/RD08172 (Review)PubMedCrossRefGoogle Scholar
  25. Skidmore JA, Billah M, Loskutoff NM (2005) Comparison of two different methods for the vitrification of hatched blastocysts from the dromedary camel (Camelus dromedarius). Reprod Fertil Dev 17(5):523–527PubMedCrossRefGoogle Scholar
  26. Skidmore JA, Billah M, Loskutoff NM (2004) Developmental competence in vitro and in vivo of cryopreserved, hatched blastocysts from the dromedary camel (Camelus dromedarius). Reprod Fertil Dev 16(6):605–609PubMedCrossRefGoogle Scholar
  27. Skidmore JA, Billah M, Binns M, Short RV, Allen WR (1999) Hybridizing Old and New World camelids: Camelus dromedarius × Lama guanicoe. Proc R Soc Lond B 266:649–656CrossRefGoogle Scholar
  28. Skidmore JA, Morton KM, Billah M (2013) Artificial insemination in dromedary camels. Anim Reprod Sci 136(3):178–186.  https://doi.org/10.1016/j.anireprosci.2012.10.008PubMedCrossRefGoogle Scholar
  29. Wani NA, Wernery U, Hassan FA, Wernery R, Skidmore JA (2010) Production of the first cloned camel by somatic cell nuclear transfer. Biol Reprod 82(2):373–379.  https://doi.org/10.1095/biolreprod.109.081083PubMedCrossRefGoogle Scholar
  30. Wani NA, Hong S, Vettical BS (2018) Cytoplast source influences development of somatic cell nuclear transfer (SCNT) embryos in vitro but not their development to term after transfer to synchronized recipients in dromedary camels (Camelus dromedarius). Theriogenology 25(118):137–143.  https://doi.org/10.1016/j.theriogenology.2018.05.021CrossRefGoogle Scholar
  31. Wani NA, Vettical BS, Hong SB (2017) First cloned Bactrian camel (Camelus bactrianus) calf produced by interspecies somatic cell nuclear transfer: a step towards preserving the critically endangered wild Bactrian camels. PLoS One 12(5):e0177800.  https://doi.org/10.1371/journal.pone.0177800 (eCollection 2017)PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations