Advertisement

Reproduction Advances in Buffaloes

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 549 Downloads

Abstract

The buffalo (Bubalus bubalis) is a prime livestock species reared for milk, meat, skin, and draught power in Asian and Mediterranean countries. The buffaloes have received the attention of reproductive molecular biologists and livestock researchers. Success has been achieved in nuclear transfer cloning, stem cell biology, genetic engineering and vitrification of gametes and embryos. The research areas which need further scientific inputs include molecular cataloguing and conservation of native breeds, developing transgenic disease-resistant herds and multiplication of the desirable genotypes.

Highlights
  • Buffaloes are multipurpose milk and meat producing animals

  • The buffaloes are reared in different climates and management conditions.

Keywords

Buffaloes Milk production Reproduction biotechniques Nuclear transfer Embryo biotechnology Diversity 

References

  1. Asma-Ul-Husna, Awan MA, Mehmood A, Sultana T, Shahzad Q, Ansari MS, Rakha BA, Saqlan Naqvi SM, Akhter S (2017) Sperm sexing in Nili-Ravi buffalo through modified swim up: validation using SYBR® green real-time PCR. Anim Reprod Sci 182:69–76.  https://doi.org/10.1016/j.anireprosci.2017.04.011 (Epub 2017 May 6)PubMedCrossRefGoogle Scholar
  2. Banwell KM, Thomson JG (2008) In vitro maturation of mammalian oocytes: outcomes and consequences. Semin Reprod Med 26:162–174PubMedCrossRefGoogle Scholar
  3. Chuang CK, Sung LY, Hwang SM, Lo WH, Ghen HC, Hu YC (2007) Baculovirus as a new gene delivery vector for stem cell engineering and bone tissue engineering. Gene Ther 14:1417–1424PubMedCrossRefGoogle Scholar
  4. Dev K, Giri SK, Kumar A, Yadav A, Singh B, Gautam SK (2012) Expression of transcriptional factor genes (Oct-4, Nanog, and Sox-2) and embryonic stem cell-like characters in placental membrane of Buffalo (Bubalus bubalis). J Membr Biol 245(4):83–177.  https://doi.org/10.1007/s00232-012-9427-5CrossRefGoogle Scholar
  5. Drost M, Wright JM Jr, Cripe WS, Richter AR (1983) Embryo transfer in water buffalo (Bubalus bubalis). Theriogenology 20:579–584.  https://doi.org/10.1016/0093-691X(83)90082-1PubMedCrossRefGoogle Scholar
  6. Drost M, Wright JM, Elsden RP (1986) Intergenic embryo transfer between water buffalo and domestic cattle. Theriogenology 25:13–23.  https://doi.org/10.1016/0093-691X(86)90180-9CrossRefGoogle Scholar
  7. Duah EK, Mohapatra SK, Sood TJ, Sandhu A, Singla SK, Chauhan MS, Manik RS, Palta P (2016) Production of hand-made cloned buffalo (Bubalus bubalis) embryos from non-viable somatic cells. Vitro Cell Dev Biol Anim 52(10):983–988 Epub 2016 Jul 15CrossRefGoogle Scholar
  8. Finger EB, Bischof JC (2018) Cryopreservation by vitrification: a promising approach for transplant organ banking. Curr Opin Organ Transplant 23(3):353–360.  https://doi.org/10.1097/MOT.0000000000000534PubMedCrossRefGoogle Scholar
  9. Galli C, Duchi R, Crotti G, Lazarri G (1998) Embryo production by ovum pick up in water buffalo. Theriogenology 49:400.  https://doi.org/10.1016/S0093-691X(98)90753-1CrossRefGoogle Scholar
  10. Galli C, Lazarri G (2008) The manipulation of gametes and embryos in farm animals. Reprod Domest Anim 43(Suppl 2):1–7PubMedCrossRefGoogle Scholar
  11. Gandhi RS, Singh A, Sharma AA (2007) Conceptual model for production and evaluation of Murrah bulls in multiple herds using embryo transfer. Indian J Dairy Sci 60:432–436Google Scholar
  12. Gasparrini B (2002) In vitro embryo production in buffalo species: state of the art. Theriogenology 57:237–256PubMedCrossRefGoogle Scholar
  13. Gautam SK, Verma V, Palta P, Chauhan MS, Manik RS (2008a) Effect of type of cryoprotectant on morphology and developmental competence of in vitro matured buffalo (Bubalus bubalis) oocytes subjected to slow freezing or vitrification. Reprod Fertil Dev 20:490–496PubMedCrossRefGoogle Scholar
  14. Gautam SK, Verma V, Singh B, Palta P, Singla SK, Chauhan MS, Manik RS (2008b) Effect of slow-freezing on morphology and developmental competence of buffalo (Bubalus bubalis) immature oocytes. Anim Reprod Sci 105:311–318PubMedCrossRefGoogle Scholar
  15. George A, Sharma R, Singh KP, Panda SK, Singla SK, Palta P, Manik R, Chauhan MS (2011) Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro fertilized and cloned blastocysts. Cell Reprogram 13(3):72–263.  https://doi.org/10.1089/cell.2010.0094 (Epub 2011 May 6)CrossRefGoogle Scholar
  16. Ghosh K, Kumar R, Singh J, Gahlawat SK, Kumar D, Selokar NL, Yadav SP, Gulati BR, Yadav PS (2015) Buffalo (Bubalus bubalis) term amniotic-membrane-derived cells exhibited mesenchymal stem cells characteristics in vitro. Vitro Cell Dev Biol Anim 51(9):21–915.  https://doi.org/10.1007/s11626-015-9920-0 (Epub 2015 May 28)CrossRefGoogle Scholar
  17. Gupta S, Pandey S, Parmar MS, Somal A, Paul A, Panda BSK, Bhat IA, Baiju I, Bharti MK, Saikumar G, Sarkar M, Chandra V, Sharma GT (2017) Impact of oocyte-secreted factors on its developmental competence in buffalo. Zygote 25(3):313–320.  https://doi.org/10.1017/S0967199417000156PubMedCrossRefGoogle Scholar
  18. Hirayama H, Kageyama S, Moriyasu S, Sawai K, Minamihashi A (2013) Embryo sexing and sex chromosomal chimerism analysis by loop-mediated isothermal amplification in cattle and water buffaloes. J Reprod Dev 59(4):321–326 (Review)PubMedCrossRefGoogle Scholar
  19. Hirayama H, Kageyama S, Takahashi Y, Moriyasu S, Sawai K, Onoe S, Watanabe K, Kojiya S, Notomi T, Minamihashi A (2006) Rapid sexing of water buffalo (Bubalus bubalis) embryos using loop-mediated isothermal amplification. Theriogenology 66:1249–1256.  https://doi.org/10.1016/J.THERIOGENOLOGY.2006.03.036PubMedCrossRefGoogle Scholar
  20. Huang B, Cui K, Li T, Wang XL, Lu F, Liu Q, da Silva FM, Shi D (2008) Generation of buffalo (Bubalus bubalis) transgenic chimeric and nuclear transfer embryos using embryonic germ-like cells expressing enhanced green fluorescent protein. Reprod Domest Anim (in press)Google Scholar
  21. Huang B, Xie TS, Shi DS, Li T, Wang XL, Mo Y, Wang ZQ, Li MM (2007) Isolation and characterization of EG-like cells from Chinese swamp buffalo (Bubalus bubalis). Cell Biol Int 31:1079–1088PubMedCrossRefGoogle Scholar
  22. Huang B, Li T, Wang XL, Xie TS, Lu YQ, da Silva FM, Shi DS (2010) Generation and characterization of embryonic stem-like cell lines derived from in vitro fertilization Buffalo (Bubalus bubalis) embryos. Reprod Domest Anim 45(1):8–122.  https://doi.org/10.1111/j.1439-0531.2008.01268.x (Epub 2008 Dec 22)CrossRefGoogle Scholar
  23. Hufana-Duran D, Pedro PB, Venturina HV, Hufana RD, Salazar AL, Duran PG, Cruz LC (2004) Post-warming hatching and birth of live calves following transfer of in vitro-derived vitrified water buffalo (Bubalus bubalis) embryos. Theriogenology 61:1429–1439PubMedCrossRefGoogle Scholar
  24. Jyotsana B, Sahare AA, Raja AK, Singh KP, Nala N, Singla SK, Chauhan MS, Manik RS, Palta P (2016) Use of peripheral blood for production of buffalo (Bubalus bubalis) embryos by handmade cloning. Theriogenology 86(5):1318–1324.e1.  https://doi.org/10.1016/j.theriogenology.2016.04.073 (Epub 2016 May 5)PubMedCrossRefGoogle Scholar
  25. Jyotsana B, Sahare AA, Raja AK, Singh KP, Singla SK, Chauhan MS, Manik RS, Palta P (2015) Handmade cloned buffalo (Bubalus bubalis) embryos produced from somatic cells isolated from milk and ear skin differ in their developmental competence, epigenetic status, and gene expression. Cell Reprogram 17(5):393–403.  https://doi.org/10.1089/cell.2015.0027 (Epub 2015 Sep 2)PubMedCrossRefGoogle Scholar
  26. Kala A, Kamra DN, Kumar A, Agarwal N, Chaudhary LC, Joshi CG (2017) Impact of levels of total digestible nutrients on microbiome, enzyme profile and degradation of feeds in buffalo rumen. PLoS One 12(2):e0172051.  https://doi.org/10.1371/journal.pone.0172051 (eCollection 2017)PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kasiraj R, Misra AK, Rao MM, Jaiswal RS, Rangareddi NS (1993) Successful culmination of pregnancy and live birth following transfer of frozen–thawed buffalo embryos. Theriogenology 39:1187–1192.  https://doi.org/10.1016/0093-691X(93)90016-XPubMedCrossRefGoogle Scholar
  28. Kitiyanant Y, Saikhun J, Chaisalee B, White KL, Pavasuthipaisit K (2001) Somatic cell cloning in buffalo (Bubalus bubalis): effects of interspecies cytoplasmic recipients and activation procedures. Cloning Stem Cells 3:97–104.  https://doi.org/10.1089/153623001753205052PubMedCrossRefGoogle Scholar
  29. Kumar D, Sharma P, Vijayalakshmy K, Selokar NL, Kumar P, Rajendran R, Yadav PS (2018) Generation of Venus fluorochrome expressing transgenic handmade cloned buffalo embryos using Sleeping Beauty transposon. Tissue Cell 51:49–55.  https://doi.org/10.1016/j.tice.2018.02.005 (Epub 2018 Feb 24)PubMedCrossRefGoogle Scholar
  30. Kumar K, Singh R, Kumar M, Agarwal P, Mahapatra PS, Kumar A, Malakar D, Bag S (2014) Isolation and characterization of neural stem cells from buffalo. Int J Neurosci 124(6):6–450.  https://doi.org/10.3109/00207454.2013.852087 (Epub 2013 Nov 7)CrossRefGoogle Scholar
  31. Liang XW, Lu YQ, Chen MT, Zhang XF, Lu SS, Zhang M, Pang CY, Huang FX, Lu KH (2008) In vitro embryo production in buffalo (Bubalus bubalis) using sexed sperm and oocytes from ovum pick up. Theriogenology 69:822–826.  https://doi.org/10.1016/J.THERIOGENOLOGY.2007.11.021PubMedCrossRefGoogle Scholar
  32. Lo WH, Hwang SM, Chuang CK, Chen CY, Hu CY (2009) Development of hybrid baculoviral vector for sustained transgene expression. Mol Ther 17:658–666PubMedPubMedCentralCrossRefGoogle Scholar
  33. Lonergan P (2007) State-of-the-art embryo technologies in cattle. Reprod Soc Fertil Suppl 64:315–325Google Scholar
  34. Lu Y, Liao Y, Zhang M, Yang B, Liang X, Yang X, Lu S, Wu Z, Xu H, Liang Y, Lu K (2015) A field study on artificial insemination of swamp and crossbred buffaloes with sexed semen from river buffaloes. Theriogenology 84(6):7–862.  https://doi.org/10.1016/j.theriogenology.2015.05.022CrossRefGoogle Scholar
  35. Lu F, Luo C, Li N, Liu Q, Wei Y, Deng H, Wang X, Li X, Jiang J, Deng Y, Shi D (2018) Efficient generation of transgenic buffalos (Bubalus bubalis) by nuclear transfer of fetal fibroblasts expressing enhanced green fluorescent protein. Sci Rep 8(1):6967.  https://doi.org/10.1038/s41598-018-25120-5PubMedPubMedCentralCrossRefGoogle Scholar
  36. Lu Y, Zhang M, Lu S, Xu D, Huang W, Meng B, Xu H, Lu K (2010) Sex-preselected buffalo (Bubalus bubalis) calves derived from artificial insemination with sexed sperm. Anim Reprod Sci 119(3–4):71–169.  https://doi.org/10.1016/j.anireprosci.2010.01.001 (Epub 2010 Jan 14)CrossRefGoogle Scholar
  37. Lu YQ, Zhang M, Meng B, Lu SS, Wei YM, Lu KH (2006) Identification of X- and Y-chromosome bearing buffalo (Bubalus bubalis) sperm. Anim Reprod Sci 95:158–164PubMedCrossRefGoogle Scholar
  38. Lu YQ, Liang XW, Zhang M, Wang WL, Kitiyanant Y, Lu SS, Meng B, Lu KH (2007) Birth of twins after in vitro fertilization with flow-cytometric sorted buffalo (Bubalus bubalis) sperm. Anim Reprod Sci 100:192–196.  https://doi.org/10.1016/J.ANIREPROSCI.2006.09.019PubMedCrossRefGoogle Scholar
  39. Lufino MM, Esder PA, Wade-Martins R (2008) Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Mol Ther 16:1525–1538PubMedCrossRefGoogle Scholar
  40. Luo C, Lu F, Wang X, Wang Z, Li X, Gong F, Jiang J, Liu Q, Shi D (2013) Treatment of donor cells with trichostatin A improves in vitro development and reprogramming of buffalo (Bubalus bubalis) nucleus transfer embryos. Theriogenology 80(8):86–878.  https://doi.org/10.1016/j.theriogenology.2013.07.013 (Epub 2013 Sep 3)CrossRefGoogle Scholar
  41. Madan ML, Prakash BS (2007) Reproductive endocrinology and biotechnology applications among buffaloes. Soc Reprod Fertil Suppl 64:261–281 (Review)PubMedGoogle Scholar
  42. Madheshiya PK, Sahare AA, Jyotsana B, Singh KP, Saini M, Raja AK, Kaith S, Singla SK, Chauhan MS, Manik RS, Palta P (2015) Production of a cloned buffalo (Bubalus bubalis) calf from somatic cells isolated from urine. Cell Reprogram 17(3):9–160.  https://doi.org/10.1089/cell.2014.0097CrossRefGoogle Scholar
  43. Mahapatra PS, Bag S (2014) Reprogramming of buffalo (Bubalus bubalis) foetal fibroblasts with avian egg extract for generation of pluripotent stem cells. Res Vet Sci 96(2):8–292.  https://doi.org/10.1016/j.rvsc.2014.02.008 (Epub 2014 Feb 18)CrossRefGoogle Scholar
  44. Manjunatha BM, Gupta PS, Ravindra JP, Devraj M, Nandi S (2008) In vitro embryo development and blastocyst hatching rates following vitrification of river buffalo embryos produced from oocytes recovered from slaughterhouse ovaries or live animals by ovum pick up. Anim Reprod Sci 104:419–426PubMedCrossRefGoogle Scholar
  45. Meng F, Li H, Wang X, Qin G, Oback B, Shi D (2015) Optimized production of transgenic buffalo embryos and offspring by cytoplasmic zygote injection. J Anim Sci Biotechnol 6:44.  https://doi.org/10.1186/s40104-015-0044-x (eCollection 2015)
  46. Mohapatra SK, Sandhu A, Neerukattu VS, Singh KP, Selokar NL, Singla SK, Chauhan MS, Manik RS, Palta P (2015a) Buffalo embryos produced by handmade cloning from oocytes selected using brilliant cresyl blue staining have better developmental competence and quality and are closer to embryos produced by in vitro fertilization in terms of their epigenetic status and gene expression pattern. Cell Reprogram 17(2):50–141.  https://doi.org/10.1089/cell.2014.0077CrossRefGoogle Scholar
  47. Mohapatra SK, Sandhu A, Singh KP, Singla SK, Chauhan MS, Manik R, Palta P (2015) Establishment of trophectoderm cell lines from buffalo (Bubalus bubalis) embryos of different sources and examination of in vitro developmental competence, quality, epigenetic status and gene expression in cloned embryos derived from them. PLoS One 10(6):e0129235.  https://doi.org/10.1371/journal.pone.0129235 (eCollection 2015)PubMedPubMedCentralCrossRefGoogle Scholar
  48. Mullani N, Singh MK, Sharma A, Rameshbabu K, Manik RS, Palta P, Singla SK, Chauhan MS (2016) Caspase-9 inhibitor Z-LEHD-FMK enhances the yield of in vitro produced buffalo (Bubalus bubalis) pre-implantation embryos and alters cellular stress response. Res Vet Sci 104:4–9.  https://doi.org/10.1016/j.rvsc.2015.11.008 (Epub 2015 Nov 14)PubMedCrossRefGoogle Scholar
  49. Nanda AS, Nakao T (2003) Role of buffalo in the socioeconomic development of rural Asia: current status and future prospectus. Anim Sci J 74:443–455 (Review article)CrossRefGoogle Scholar
  50. Nagy ZP, Kerkis I, Chang CC (2008) Development of artificial gametes. Reprod Biomed Online 16:539–544PubMedCrossRefGoogle Scholar
  51. Neglia G, Gasparrini B, Caracciolo di Brienza V, Di Palo R, Campanile G, Zicarelli L (2003) First pregnancies established from vitrified blastocysts entirely produced in vitro in Mediterranean Italian buffalo cows (Bubalis bubalis). Theriogenology 59:374 (Abstract).  https://doi.org/10.1016/s0093-691x(02)01170-6PubMedCrossRefGoogle Scholar
  52. Parnpai R, Liang Y, Ketudat-Cairns M, Somfai T, Nagai T (2016) Vitrification of buffalo oocytes and embryos. Theriogenology 86(1):214–220.  https://doi.org/10.1016/j.theriogenology.2016.04.034 (Epub 2016 Apr 21, Review)PubMedCrossRefGoogle Scholar
  53. Parnpai R, Tasrpoo K, Kamonpatana M (1999) Development of cloned swamp buffalo embryos derived from fetal fibroblast: comparison of in vitro cultured with or without buffalo and cattle oviductal epithelial cells. Buffalo J 15:371–384Google Scholar
  54. Parnpai R, Tasripoo K, Kamonpatana M (2000) Developmental potential of cloned bovine embryos derived from quiescent and non-quiescent adult ear fibroblasts after different activation treatments. Theriogenology 53:239 (Abstract)Google Scholar
  55. Perera BM (2008) Reproduction in domestic buffalo. Reprod Domest Anim 43(Suppl 2):200–206PubMedCrossRefGoogle Scholar
  56. Presicce GA, Verberckmoes S, Senatore EM, Rath D (2005a) First established pregnancies in Mediterranean Italian buffaloes (Bubalus bubalis) following deposition of sexed spermatozoa near the utero tubal junction. Reprod Domest Anim 40:73–75.  https://doi.org/10.1111/J.1439-0531.2004.00560.XPubMedCrossRefGoogle Scholar
  57. Presicce GA, Rath D, Klinc P, Senatore EM, Pascale M (2005b) Buffalo calves born following AI with sexed semen. Reprod Domest Anim 40:349Google Scholar
  58. Priya D, Selokar NL, Raja AK, Saini M, Sahare AA, Nala N, Palta P, Chauhan MS, Manik RS, Singla SK (2014) Production of wild buffalo (Bubalus arnee) embryos by interspecies somatic cell nuclear transfer using domestic buffalo (Bubalus bubalis) oocytes. Reprod Domest Anim 49(2):51–343.  https://doi.org/10.1111/rda.12284 (Epub 2014 Feb 3)CrossRefGoogle Scholar
  59. Rao KB, Pawshe CH, Totey SM (1993) Sex determination of in vitro developed buffalo (Bubalus bubalis) embryos by DNA amplification. Mol Reprod Dev 36:291–296.  https://doi.org/10.1002/MRD.1080360302PubMedCrossRefGoogle Scholar
  60. Sadeesh Em, Shah F, Yadav PS (2016) Differential developmental competence and gene expression patterns in buffalo (Bubalus bubalis) nuclear transfer embryos reconstructed with fetal fibroblasts and amnion mesenchymal stem cells. Cytotechnology 68(5):1827–1848.  https://doi.org/10.1007/s10616-015-9936-z (Epub 2015 Dec 14)PubMedPubMedCentralCrossRefGoogle Scholar
  61. Saha A, Panda SK, Chauhan MS, Manik RS, Palta P, Singla SK (2013) Birth of cloned calves from vitrified-warmed zona-free buffalo (Bubalus bubalis) embryos produced by hand-made cloning. Reprod Fertil Dev 25(6):5–860.  https://doi.org/10.1071/RD12061CrossRefGoogle Scholar
  62. Saini M, Selokar NL, Raja AK, Sahare AA, Singla SK, Chauhan MS, Manik RS, Palta P (2015) Effect of donor cell type on developmental competence, quality, gene expression, and epigenetic status of interspecies cloned embryos produced using cells from wild buffalo and oocytes from domestic buffalo. Theriogenology 84(1):101–108.e1.  https://doi.org/10.1016/j.theriogenology.2015.02.018 (Epub 2015 Feb 23)PubMedCrossRefGoogle Scholar
  63. Saini M, Selokar NL, Agrawal H, Singla SK, Chauhan MS, Manik RS, Palta P (2016) Treatment of buffalo (Bubalus bubalis) donor cells with trichostatin A and 5-aza-2’-deoxycytidine alters their growth characteristics, gene expression and epigenetic status and improves the in vitro developmental competence, quality and epigenetic status of cloned embryos. Reprod Fertil Dev 28(6):37–824.  https://doi.org/10.1071/RD14176CrossRefGoogle Scholar
  64. Saini M, Selokar NL, Revey T, Singla SK, Chauhan MS, Palta P, Madan P (2014) Trichostatin A alters the expression of cell cycle controlling genes and microRNAs in donor cells and subsequently improves the yield and quality of cloned bovine embryos in vitro. Theriogenology 82(7):42–1036.  https://doi.org/10.1016/j.theriogenology.2014.07.027 (Epub 2014 Jul 24)CrossRefGoogle Scholar
  65. Sandhu A, Mohapatra SK, Agrawal H, Singh MK, Palta P, Singla SK, Chauhan MS, Manik RS (2016) Effect of sex of embryo on developmental competence, epigenetic status, and gene expression in buffalo (Bubalus bubalis) embryos produced by hand-made cloning. Cell Reprogram 18(5):356–365PubMedCrossRefGoogle Scholar
  66. Selokar NL, Saini M, Palta P, Chauhan MS, Manik R, Singla SK (2014) Hope for restoration of dead valuable bulls through cloning using donor somatic cells isolated from cryopreserved semen. PLoS One 9(3):e90755.  https://doi.org/10.1371/journal.pone.0090755 (eCollection 2014)PubMedPubMedCentralCrossRefGoogle Scholar
  67. Selokar NL, Saini M, Agrawal H, Palta P, Chauhan MS, Manik R, Singla SK (2016) Buffalo (Bubalus bubalis) SCNT embryos produced from somatic cells isolated from frozen-thawed semen: effect of trichostatin A on the in vitro and in vivo developmental potential, quality and epigenetic status. Zygote 24(4):53–549.  https://doi.org/10.1017/S0967199415000520 (Epub 2015 Oct 27)CrossRefGoogle Scholar
  68. Selokar NL, Sharma P, Krishna A, Kumar D, Kumar D, Saini M, Sharma A, Vijayalakshmy K, Yadav PS (2018) Establishment of a somatic cell bank for indian buffalo breeds and assessing the suitability of the cryopreserved cells for somatic cell nuclear transfer. Cell Reprogram 20(3):157–163.  https://doi.org/10.1089/cell.2017.0066PubMedCrossRefGoogle Scholar
  69. Shah RA, George A, Singh MK, Kumar D, Chauhan MS, Manik RS, Palta P, Singla SK (2008) Hand-made cloned buffalo (Bubalus bubalis) embryos: comparison of different culture media and culture sysytems. Cloning Stem Cells 10:435–442PubMedCrossRefGoogle Scholar
  70. Shah RA, George A, Singh MK, Kumar D, Anand T, Chauhan MS, Manik RS, Palta P, Singla SK (2009) Pregnancies established from handmade cloned blastocysts reconstructed using skin fibroblasts in buffalo (Bubalus bubalis). Theriogenology 71:1215–1219PubMedCrossRefGoogle Scholar
  71. Shi D, Lu F, Wei Y, Cui K, Yang S, Wei J, Liu Q (2007) Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biol Reprod 77:285–291.  https://doi.org/10.1095/BIOLREPROD.107.060210PubMedCrossRefGoogle Scholar
  72. Singh B, Chauhan MS, Singla SK, Gautam SK, Verma V, Manik RS, Singh AK, Sodhi M, Mukesh M (2009) Reproductive biotechniques in buffaloes (Bubalus bubalis): status, prospects and challenges. Reprod Fertil Dev 21:499–510 (Review)PubMedCrossRefGoogle Scholar
  73. Singh B, Gautam SK, Verma V, Kumar M, Singh B (2008) Metagenomics in animal gastrointestinal ecosystem: Potential biotechnological prospects. Anaerobe 14(3):138–144.  https://doi.org/10.1016/j.anaerobe.2008.03.002 (Epub 2008 Mar 26, Review)CrossRefGoogle Scholar
  74. Singh B, Mal G, Yadav PS, Singla SK (2016) Buffaloes of North-West Himalayan Region of India. In: Asian Buffalo Magazine, pp 12–16 (Jan–Dec 2016)Google Scholar
  75. Singla SK, Manik RS, Madan ML (1997) Micromanipulation and cloning studies on buffalo oocytes and embryos using nucleus transfer. Indian J Exp Biol 35:1273–1283PubMedGoogle Scholar
  76. Sritnaudomchai H, Pavasuthipaisit K, Kiyiyanant Y, Kupradinun P, Mitalipov S. Kusamran T (2007) Characterization and multilineage differentiation of embryonic stem cells derived from a buffalo parthenogenetic embryo. Mol Reprod Dev 74:1295–1302Google Scholar
  77. Sun HL, Meng LN, Zhao X, Jiang JR, Liu QY, Shi DS, Lu FH (2016) Effects of DNA methyltransferase inhibitor RG108 on methylation in buffalo adult fibroblasts and subsequent embryonic development following somatic cell nuclear transfer. Genet Mol Res 15(3).  https://doi.org/10.4238/gmr.15038455
  78. Tasripoo K, Suthikrai W, Sophon S, Jintana R, Nualchuen W, Usawang S, Bintvihok A, Techakumphu M, Srisakwattana K (2014) First cloned swamp buffalo produced from adult ear fibroblast cell. Animal 8(7):1139–1145.  https://doi.org/10.1017/S1751731114001050PubMedCrossRefGoogle Scholar
  79. Techakumphu M, Lohachit C, Chantaraprateep P, Prateet P, Kobayashi G (1989) Preliminary report on cryopreservation of Thai swamp buffalo embryos: manual and automatic methods. Buffalo Bull 8:29–36Google Scholar
  80. Verma V, Gautam SK, Singh B, Manik RS, Palta P, Singla SK, Gosawami SL, Chauhan MS (2007) Isolation and characterization of embryonic stem cell-like cells from in vitro-produced buffalo (Bubalus bubalis) embryos. Mol Reprod Dev 74:520–529PubMedCrossRefGoogle Scholar
  81. Verma V, Gautam SK, Palta P, Manik RS, Singla SK, Chauhan MS (2008) Development of a pronuclear DNA microinjection technique for production of green fluorescent protein-expressing bubaline (Bubalus bubalis) embryos. Theriogenology 69:655–665PubMedCrossRefGoogle Scholar
  82. Zandi M, Muzaffar M, Shah SM, Kaushik R, Singh MK, Palta P, Singla SK, Manik RS, Chauhan MS (2014) WNT3A signalling pathway in buffalo (Bubalus bubalis) embryonic stem cells. Reprod Fertil Dev 26(4):551–561.  https://doi.org/10.1071/RD13084PubMedCrossRefGoogle Scholar
  83. Zoheir KM, Allam AA (2011) A rapid improved method for sexing embryo of water buffalo. Theriogenology 76(1):83–87.  https://doi.org/10.1016/j.theriogenology.2011.01.020 (Epub 2011 Mar 11, Erratum in: Theriogenology. 2012 May;77(8):1729)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations