Advertisement

Micromanipulation Technology in Health and Assisted Reproduction

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 545 Downloads

Abstract

The research subject, “micromanipulation” covers the equipments, microtools and techniques for manipulation and microsurgery at cell levels. The micromanipulation is an essential process in assisted reproduction viz., treating and improving fertility, in vitro embryo production, nuclear transfer cloning, deriving embryonic cells from embryos, pre-implantation genetic diagnosis, cellular genetic engineering, and gene therapy. Besides, the technology has applications in tumor surgery and neurovascular pathology.

Highlights
  • Micromanipulation is an integral component of advanced livestock assisted reproduction

  • Besides, the micromanipulation is used in genome editing and genetic engineering.

Keywords

Micromanipulation Microtools Microsurgery Genetic engineering Nanotechnology-based micromanipulation Cellular manipulation 

References

  1. Bogliotti YS, Vilarino M, Ross PJ (2016) Laser-assisted cytoplasmic microinjection in livestock zygotes. J Vis Exp (116).  https://doi.org/10.3791/54465
  2. Fridman MD, Liu J, Sun Y, Hamilton RM (2016) Microinjection technique for assessment of gap junction function. Methods Mol Biol 1437:145–154.  https://doi.org/10.1007/978-1-4939-3664-9_10CrossRefPubMedGoogle Scholar
  3. Fulka H, Fulka J Jr (2007) The use of micromanipulation methods as a tool to prevention of transmission of mutated mitochondrial DNA. Curr Top Dev Biol 77:187–211CrossRefGoogle Scholar
  4. Fulka H, Langerova A, Barnetova I, Novakova Z, Mosko T, Fulka J Jr (2009) How to repair the oocyte and zygote? J Reprod Dev 55(6):583–587CrossRefGoogle Scholar
  5. Gordon JW, Talansky BE (1986) Assisted fertilization by zona drilling: a mouse model for correction of oligospermia. J Exp Zool 239(3):347–354CrossRefGoogle Scholar
  6. Gordon JW, Grunfeld L, Garrisi GJ, Talansky BE, Richards C, Laufer N (1988) Fertilization of human oocytes by sperm from infertile males after zona pellucida drilling. Fertil Steril 50(1):68–73CrossRefGoogle Scholar
  7. Gollihue JL, Patel SP, Mashburn C, Eldahan KC, Sullivan PG, Rabchevsky AG (2017) Optimization of mitochondrial isolation techniques for intraspinal transplantation procedures. J Neurosci Methods 1(287):1–12.  https://doi.org/10.1016/j.jneumeth.2017.05.023 (Epub 2017 May 26)CrossRefGoogle Scholar
  8. Hinrichs K, Choi YH (2016) Micromanipulation of equine blastocysts to allow vitrification. Reprod Fertil Dev.  https://doi.org/10.1071/rd15389
  9. Kang M, Kim B (2015) Au nanoinjectors for electrotriggered gene delivery into the cell nucleus. Methods Mol Biol 1228:55–65.  https://doi.org/10.1007/978-1-4939-1680-1_6CrossRefPubMedGoogle Scholar
  10. Knowles JK (1974) An improved microinjection technique in Paramecium aurelia. Transfer of mitochondria conferring erythromycin-resistance. Exp Cell Res 88(1):79–87CrossRefGoogle Scholar
  11. Li R, Miao J, Fan Z, Song S, Kong IK, Wang Y, Wang Z (2018) Production of genetically engineered Golden Syrian Hamsters by pronuclear injection of the CRISPR/Cas9 complex. J Vis Exp (131).  https://doi.org/10.3791/56263
  12. Markert CL (1983) Fertilization of mammalian eggs by sperm injection. J Exp Zool 228(2):195–201CrossRefGoogle Scholar
  13. Malter HE (2016) Micromanipulation in assisted reproductive technology. Reprod Biomed Online 32(4):339–347.  https://doi.org/10.1016/j.rbmo.2016.01.012 (Epub 2016 Feb 9, Review)CrossRefGoogle Scholar
  14. Nakayama T, Fujiwara H, Tastumi K, Fujita K, Higuchi T, Mori T (1998) A new assisted hatching technique using a piezo-micromanipulator. Fertil Steril 69(4):784–788CrossRefGoogle Scholar
  15. Nakayama T, Fujiwara H, Yamada S, Tastumi K, Honda T, Fujii S (1999) Clinical application of a new assisted hatching method using a piezo-micromanipulator for morphologically low-quality embryos in poor-prognosis infertile patients. Fertil Steril 71(6):1014–1018CrossRefGoogle Scholar
  16. Nguyen HX, Banga AK (2017) Fabrication, characterization and application of sugar microneedles for transdermal drug delivery. Ther Deliv 8(5):249–264.  https://doi.org/10.4155/tde-2016-0096CrossRefPubMedGoogle Scholar
  17. Nguyen HX, Banga AK (2018) Delivery of methotrexate and characterization of skin treated by fabricated PLGA microneedles and fractional ablative laser. Pharm Res 35(3):68.  https://doi.org/10.1007/s11095-018-2369-6CrossRefPubMedGoogle Scholar
  18. Nguyen HX, Bozorg BD, Kim Y, Wieber A, Birk G, Lubda D, Banga AK (2018) Poly (vinyl alcohol) microneedles: fabrication, characterization, and application for transdermal drug delivery of doxorubicin. Eur J Pharm Biopharm 129:88–103.  https://doi.org/10.1016/j.ejpb.2018.05.017 (Epub 2018 May 22)CrossRefPubMedGoogle Scholar
  19. Park K, Kim KC, Lee H, Sung Y, Kang M, Lee YM, Ahn JY, Lim JM, Kang T, Kim B, Lee EJ (2017) Suppressing mosaicism by Au nanowire injector-driven direct delivery of plasmids into mouse embryos. Biomaterials 138:169–178.  https://doi.org/10.1016/j.biomaterials.2017.05.044 (Epub 2017 May 27)CrossRefPubMedGoogle Scholar
  20. Patananan AN, Wu TH, Chiou PY, Teitell MA (2016) Modifying the mitochondrial genome. Cell Metab 23(5):785–796.  https://doi.org/10.1016/j.cmet.2016.04.004 (Review)CrossRefPubMedPubMedCentralGoogle Scholar
  21. Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56(5):581–587CrossRefGoogle Scholar
  22. Qiu Y, Li C, Zhang S, Yang G, He M, Gao Y (2016) Systemic delivery of artemether by dissolving microneedles. Int J Pharm 508(1–2):1–9.  https://doi.org/10.1016/j.ijpharm.2016.05.006 (Epub 2016 May 2)CrossRefPubMedGoogle Scholar
  23. Radelfahr F, Klopstock T (2018) Diagnostic and therapeutic approaches for mitochondrial diseases. Fortschr Neurol Psychiatr 86(9):584–591.  https://doi.org/10.1055/a-0621-9255 (Epub 2018 Sep 24, German)CrossRefGoogle Scholar
  24. Sato M, Kosuke M, Koriyama M, Inada E, Saitoh I, Ohtsuka M, Nakamura S, Sakurai T, Watanabe S, Miyoshi K (2018) Timing of CRISPR/Cas9-related mRNA microinjection after activation as an important factor affecting genome editing efficiency in porcine oocytes. Theriogenology 1(108):129–138.  https://doi.org/10.1016/j.theriogenology.2017.11.030 (Epub 2017 Nov 26)CrossRefGoogle Scholar
  25. Shabataev V, Tal R (2017) Artificial sperm: new horizons in procreation. Rambam Maimonides Med J 8(4).  https://doi.org/10.5041/rmmj.10319CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations