Advertisement

Metagenomics for Utilizing Herbivore Gut Potential

  • Birbal SinghEmail author
  • Gorakh Mal
  • Sanjeev K. Gautam
  • Manishi Mukesh
Chapter
  • 555 Downloads

Abstract

Herbivores possess a mesmerizing gut ecosystem evolved to degrade and convert crude plant biomass and non-protein nitrogen to energy precursors and high biological value proteins. It is high time to unravel valued gut microbiota of herbivores by culture-independent molecular biological and metagenomics tools, and exploit the inferences to actually obtain microorganisms and microbial metabolites of commercial interest, and evolve strategies to improve undesirable processes associated with gut metabolism.
  • Highlights

  • Herbivorous animals has precious gut microbiota and microbial metabolites

  • Metagenomics has unravelled a lot about uncultured gut microbiota

  • Many bottlenecks has to be resolved to actually utilize the potential of gut microbiota.

Keywords

Herbivores Rumen Metagenomics Hydrolytic enzymes Therapeutics Industrial applications 

References

  1. Aagaard K, Riehle K, Ma J, Segata N, Mistretta TA, Coarfa C, Raza S, Rosenbaum S, Van den Veyver I, Milosavljevic A, Gevers D, Huttenhower C, Petrosino J, Versalovic J (2012) A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS ONE 7(6):e36466.  https://doi.org/10.1371/journal.pone.0036466CrossRefPubMedPubMedCentralGoogle Scholar
  2. Azevedo AC, Bento CB, Ruiz JC, Queiroz MV, Mantovani HC (2015) Distribution and genetic diversity of bacteriocin gene clusters in rumen microbial genomes. Appl Environ Microbiol 81(20):7290–7304.  https://doi.org/10.1128/AEM.01223-15 (Epub 2015 Aug 7)CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bayer S, Kunert A, Ballschmiter M, Greiner-Stoeffele T (2010) Indication for a new lipolytic enzyme family: isolation and characterization of two esterases from a metagenomic library. J Mol Microbiol Biotechnol 18:181–187.  https://doi.org/10.1159/000315459CrossRefPubMedGoogle Scholar
  4. Beloqui A, Pita M, Polaina J, Martinez-Arias A, Golyshina OV, Zumarraga M (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationship. J Biol Chem 281:22933–22942CrossRefGoogle Scholar
  5. Cai L, Chen TB, Zheng SW, Liu HT, Zheng GD (2018) Decomposition of lignocellulose and readily degradable carbohydrates during sewage sludge biodrying, insights of the potential role of microorganisms from a metagenomic analysis. Chemosphere 201:127–136.  https://doi.org/10.1016/j.chemosphere.2018.02.177 (Epub 28 Feb 2018)CrossRefGoogle Scholar
  6. Cheng F, Sheng J, Cai T, Jin J, Liu W, Lin Y, Du Y, Zhang M, Shen L (2012) A protease-insensitive feruloyl esterase from China Holstein cow rumen metagenomic library: expression, characterization, and utilization in ferulic acid release from wheat straw. J Agric Food Chem 60:2546–2553.  https://doi.org/10.1021/jf204556uCrossRefPubMedGoogle Scholar
  7. Cheng J, Huang S, Jiang H, Zhang Y, Li L, Wang J, Fan C (2016) Isolation and characterization of a non-specific endoglucanase from a metagenomic library of goat rumen. World J Microbiol Biotechnol 32(1):12.  https://doi.org/10.1007/s11274-015-1957-4CrossRefPubMedGoogle Scholar
  8. Chng KR, Tay AS, Li C, Ng AH, Wang J, Suri BK, Matta SA, McGovern N, Janela B, Wong XF, Sio YY, Au BV, Wilm A, De Sessions PF, Lim TC, Tang MB, Ginhoux F, Connolly JE, Lane EB, Chew FT, Common JE, Nagarajan N (2016) Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol 1(9):16106.  https://doi.org/10.1038/nmicrobiol.2016.106CrossRefPubMedGoogle Scholar
  9. Chung LK, Raffatellu M (2018) G.I. pros: Antimicrobial defense in the gastrointestinal tract. Semin Cell Dev Biol. 12 Feb 2018. pii: S1084-9521(17)30414-7.  https://doi.org/10.1016/j.semcdb.2018.02.001 (Epub ahead of print. Review)CrossRefGoogle Scholar
  10. Clemmons BA, Voy BH, Myer PR (2018) Altering the Gut Microbiome of cattle: considerations of host-microbiome interactions for persistent microbiome manipulation. Microb Ecol 22 July 2018.  https://doi.org/10.1007/s00248-018-1234-9 (Epub ahead of print)CrossRefGoogle Scholar
  11. Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti A, Levenez F, Tramontano M, Driessen M, Hercog R, Jung FE, Kultima JR, Hayward MR, Coelho LP, Allen-Vercoe E, Bertrand L, Blaut M, Brown JRM, Carton T, Cools-Portier S, Daigneault M, Derrien M, Druesne A, de Vos WM, Finlay BB, Flint HJ, Guarner F, Hattori M, Heilig H, Luna RA, van Hylckama Vlieg J, Junick J, Klymiuk I, Langella P, Le Chatelier E, Mai V, Manichanh C, Martin JC, Mery C, Morita H, O’Toole PW, Orvain C, Patil KR, Penders J, Persson S, Pons N, Popova M, Salonen A, Saulnier D, Scott KP, Singh B, Slezak K, Veiga P, Versalovic J, Zhao L, Zoetendal EG, Ehrlich SD, Dore J, Bork P (2017) Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol 35(11):1069–1076.  https://doi.org/10.1038/nbt.3960 Epub 2017 Oct 2CrossRefPubMedGoogle Scholar
  12. Dai X, Zhu Y, Luo Y, Song L, Liu D, Liu L, Chen F, Wang M, Li J, Zeng X, Dong Z, Hu S, Li L, Xu J, Huang L, Dong X (2012) Metagenomic insights into the fibrolytic microbiome in yak rumen. PLoS ONE 7:e40430.  https://doi.org/10.1371/journal.pone.0040430CrossRefPubMedPubMedCentralGoogle Scholar
  13. Del Pozo MV, Fernández-Arrojo L, Gil-Martínez J, Montesinos A, Chernikova TN, Nechitaylo TY, Waliszek A, Tortajada M, Rojas A, Huws SA, Golyshina OV, Newbold CJ, Polaina J, Ferrer M, Golyshin PN (2012) Microbial beta-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnol Biofuels 5:73.  https://doi.org/10.1186/1754-6834-5-73CrossRefPubMedPubMedCentralGoogle Scholar
  14. Diaz-Torres ML, McNab R, Spratt DA, Villedieu A, Hunt N, Wilson M, Mullany P (2003) Novel tetracycline resistance determined from the oral metagenome. Antimicrob Agents Chemother 47:1430–1432CrossRefGoogle Scholar
  15. Denman SE, Morgavi DP, McSweeney CS (Review) (2018) The application of omics to rumen microbiota function. Animal 28:1–13.  https://doi.org/10.1017/s175173111800229xCrossRefGoogle Scholar
  16. Duan CJ, Liu JL, Wu X, Tang JL, Feng JX (2010) Novel carbohydrate-binding module identified in a ruminal metagenomic endoglucanase. Appl Environ Microbiol 76:4867–4870.  https://doi.org/10.1128/AEM.00011-10CrossRefPubMedPubMedCentralGoogle Scholar
  17. Duan CJ, Xian L, Zhao GC, Feng Y, Pang H, Bai XL, Tang JL, Ma QS, Feng JX (2009) Isolation and partial characterization of novel genes encoding acidic cellulases from metagenome of buffalo rumens. J Applied Microbiol 107:245–256.  https://doi.org/10.1111/j.1365-2672.2009.04202.xCrossRefGoogle Scholar
  18. Durso LM, Harhay GP, Bono JL, Smith TP (2011) Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach. J Microbiol Methods 84(2):278–282.  https://doi.org/10.1016/j.mimet.2010.12.008 (Epub 2010 Dec 16)CrossRefPubMedGoogle Scholar
  19. Feng Y, Duan CJ, Liu L, Tang JL, Feng JX (2009) Properties of a metagenome-derived beta-glucosidase from the contents of rabbit cecum. Biosci Biotechnol Biochem 73:1470–1473CrossRefGoogle Scholar
  20. Ferrer M, Ghazi A, Beloqui A, Vieites JM, López-Cortés N, Marín-Navarro J, Nechitaylo TY, Guazzaroni ME, Polaina J, Waliczek A, Chernikova TN, Reva ON, Golyshina OV, Golyshin PN (2012) Functional metagenomics unveils a multifunctional glycosyl hydrolase from the family 43 catalysing the breakdown of plant polymers in the calf rumen. PLoS ONE 7:e38134.  https://doi.org/10.1371/journal.pone.0038134CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ferrer M, Beloqui A, Golyshina OV, Plou FJ, Neef A, Chernikova TN (2007) Biochemical structure features of a novel cyclodextrinase from cow rumen metagenome. Biotechnol J 2:207–213CrossRefGoogle Scholar
  22. Findley SD, Mormile MR, Sommer-Hurley A, Zhang XC, Tipton P, Arnett K, Porter JH, Kerley M, Stacey G (2011) Activity-based metagenomic screening and biochemical characterization of bovine ruminal protozoan glycoside hydrolases. Appl Environ Microbiol 77(22):8106–8113.  https://doi.org/10.1128/AEM.05925-11 (Epub 2011 Sep 23)CrossRefPubMedPubMedCentralGoogle Scholar
  23. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6(2):121–131.  https://doi.org/10.1038/nrmicro1817.ReviewCrossRefPubMedGoogle Scholar
  24. Gharechahi J, Salekdeh GH (2018) A metagenomic analysis of the camel rumen’s microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation. Biotechnol Biofuels 11:216. 2 Aug 2018.  https://doi.org/10.1186/s13068-018-1214-9 (eCollection 2018)
  25. Guo H, Feng Y, Mo X, Duan C, Tang J, Feng J (2008) Cloning and expression of beta-glucosidase gene umcel3G from metagenome of buffalo rumen and characterization of the translated product. Sheng Wu Gong Cheng Xue Bao 24:232–8 (Article in Chinese, abstract in English)Google Scholar
  26. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249CrossRefGoogle Scholar
  27. Hatziioanou D, Gherghisan-Filip C, Saalbach G, Horn N, Wegmann U, Duncan SH, Flint HJ, Mayer MJ, Narbad A (2017) Discovery of a novel lantibiotic nisin O from Blautia obeum A2-162, isolated from the human gastrointestinal tract. Microbiology 163(9):1292–1305.  https://doi.org/10.1099/mic.0.000515CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467.  https://doi.org/10.1126/science.1200387CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hitch TCA, Thomas BJ, Friedersdorff JCA, Ougham H, Creevey CJ (2018) Deep sequence analysis reveals the ovine rumen as a reservoir of antibiotic resistance genes. Environ Pollut 235:571–575.  https://doi.org/10.1016/j.envpol.2017.12.067 (Epub 2018 Jan 11)CrossRefPubMedGoogle Scholar
  30. Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386CrossRefGoogle Scholar
  31. Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, Ruscheweyh HJ, Tappu R (2016) MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12(6):e1004957. 21 Jun 2016.  https://doi.org/10.1371/journal.pcbi.1004957. eCollection 2016 JunCrossRefGoogle Scholar
  32. Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, Muñoz-Tamayo R, Forano E, Waters SM, Hess M, Tapio I, Smidt H, Krizsan SJ, Yáñez-Ruiz DR, Belanche A, Guan L, Gruninger RJ, McAllister TA, Newbold CJ, Roehe R, Dewhurst RJ, Snelling TJ, Watson M, Suen G, Hart EH, Kingston-Smith AH, Scollan ND, do Prado RM, Pilau EJ, Mantovani HC, Attwood GT, Edwards JE, McEwan NR, Morrisson S, Mayorga OL, Elliott C, Morgavi DP (2018) Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Front Microbiol 9:2161. 25 Sep 2018.  https://doi.org/10.3389/fmicb.2018.02161. eCollection 2018 (Review)
  33. Kim HB, Lee KT, Kim MJ, Lee JS, Kim KS (2018) Identification and characterization of a novel KG42 xylanase (GH10 family) isolated from the black goat rumen-derived metagenomic library. Carbohydr Res 469:1–9.  https://doi.org/10.1016/j.carres.2018.08.010 (Epub 2018 Aug 22)CrossRefPubMedGoogle Scholar
  34. Kohl KD, Connelly JW, Dearing MD, Forbey JS (2016) Microbial detoxification in the gut of a specialist avian herbivore, the Greater Sage-Grouse. FEMS Microbiol Lett 363(14). pii: fnw144.  https://doi.org/10.1093/femsle/fnw144 (Epub 2016 May 29)CrossRefGoogle Scholar
  35. Kohl KD, Oakeson KF, Orr TJ, Miller AW, Forbey JS, Phillips CD, Dale C, Weiss RB, Dearing MD (2018) Metagenomic sequencing provides insights into microbial detoxification in the guts of small mammalian herbivores (Neotoma spp.). FEMS Microbiol Ecol 94(12). 1 Nov 2018.  https://doi.org/10.1093/femsec/fiy184
  36. Lee KT, Toushik SH, Baek JY, Kim JE, Lee JS, Kim KS (2018) Metagenomic mining and functional characterization of a novel KG51 bifunctional cellulase/hemicellulase from black goat rumen. J Agric Food Chem 66(34):9034–9041.  https://doi.org/10.1021/acs.jafc.8b01449 (Epub 2018 Aug 20)CrossRefPubMedGoogle Scholar
  37. Li F, Chen C, Wei W, Wang Z, Dai J, Hao L, Song L, Zhang X, Zeng L, Du H, Tang H, Liu N, Yang H, Wang J, Madsen L, Brix S, Kristiansen K, Xu X, Li J, Wu R, Jia H (2018) The metagenome of the female upper reproductive tract. Gigascience 7(10). 1 Oct 2018.  https://doi.org/10.1093/gigascience/giy107
  38. Liu K, Wang J, Bu D, Zhao S, McSweeny CS, Yu P, Li D (2009a) Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen. Biochem Biophys Res Commun 385:605–611.  https://doi.org/10.1016/j.bbrc.2009.05.110CrossRefPubMedGoogle Scholar
  39. Liu L, Tang J, Feng J (2009b) Bacterial diversity in Guangxi buffalo rumen. Wei Sheng Wu Xue Bao 49:251–56 (Article in Chinese, abstract in English)Google Scholar
  40. Lopez-Cortes N, Reyes-Duarte D, Beloqui A, Polaina J, Ghazi I, Golyshina OV (2007) Catalytic role of conserved HQGE motif in the CE6 carbohydrate esterase family. FEBS Lett 581:4657–4662CrossRefGoogle Scholar
  41. Mariathasan S, Tan MW (2017) Antibody-antibiotic conjugates: a novel therapeutic platform against bacterial infections. Trends Mol Med 23(2):135–149.  https://doi.org/10.1016/j.molmed.2016.12.008. Epub 2017 Jan 23 (Review)CrossRefGoogle Scholar
  42. Martin TC, Visconti A, Spector TD, Falchi M (2018) Conducting metagenomic studies in microbiology and clinical research. Appl Microbiol Biotechnol 102(20):8629–8646.  https://doi.org/10.1007/s00253-018-9209-9. Epub 2018 Aug 4 (Review)CrossRefGoogle Scholar
  43. Matsuzawa T, Kaneko S, Yaoi K (2015) Screening, identification, and characterization of a GH43 family β-xylosidase/α-arabinofuranosidase from a compost microbial metagenome. Appl Microbiol Biotechnol 99(21):8943–8954.  https://doi.org/10.1007/s00253-015-6647-5 (Epub 2015 May 14)CrossRefPubMedGoogle Scholar
  44. Mayorga OL, Elliott C, Morgavi DP (2018) Addressing global ruminant agricultural challenges through understanding the rumenmicrobiome: past, present, and future. Front Microbiol 9:2161. 25 Sep 2018.  https://doi.org/10.3389/fmicb.2018.02161. eCollection 2018 (Review)
  45. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 19(9):386.  https://doi.org/10.1186/1471-2105-9-386CrossRefGoogle Scholar
  46. Mootapally CS, Nathani NM, Patel AK, Jakhesara SJ, Joshi CG (2016) Mining of ruminant microbial phytase (RPHY1) from metagenomic data of mehsani buffalo breed: identification, gene cloning, and characterization. J Mol Microbiol Biotechnol 26(4):252–260.  https://doi.org/10.1159/000445321 (Epub 2016 May 13)CrossRefPubMedGoogle Scholar
  47. Nguyen NH, Maruset L, Uengwetwanit T, Mhuantong W, Harnpicharnchai P, Champreda V, Tanapongpipat S, Jirajaroenrat K, Rakshit SK, Eurwilaichitr L, Pongpattanakitshote S (2012) Identification and characterization of a cellulase-encoding gene from the buffalo rumen metagenomic library. Biosci Biotechnol Biochem 76:1075–1084CrossRefGoogle Scholar
  48. Namonyo S, Wagacha M, Maina S, Wambua L, Agaba M (2018) A metagenomic study of the rumen virome in domestic caprids. Arch Virol 163(12):3415–3419.  https://doi.org/10.1007/s00705-018-4022-4. Epub 2018 Sep 15. Erratum in: Arch Virol. 10 Oct 2018CrossRefGoogle Scholar
  49. Oyama LB, Crochet JA, Edwards JE, Girdwood SE, Cookson AR, Fernandez-Fuentes N, Hilpert K, Golyshin PN, Golyshina OV, Privé F, Hess M, Mantovani HC, Creevey CJ, Huws SA (2017) Buwchitin: a ruminal peptide with antimicrobial potential against Enterococcus faecalis. Front Chem 5:51. 12 Jul 2017b.  https://doi.org/10.3389/fchem.2017.00051 (eCollection 2017)
  50. Oyama LB, Girdwood SE, Cookson AR, Fernandez-Fuentes N, Privé F, Vallin HE, Wilkinson TJ, Golyshin PN, Golyshina OV, Mikut R, Hilpert K, Richards J, Wootton M, Edwards JE, Maresca M, Perrier J, Lundy FT, Luo Y, Zhou M, Hess M, Mantovani HC, Creevey CJ, Huws SA (2017b) The rumen microbiome: an underexplored resource for novel antimicrobial discovery. NPJ Biofilms Microbiomes. 1(3):33.  https://doi.org/10.1038/s41522-017-0042-1.eCollection2017CrossRefGoogle Scholar
  51. Patel AB, Patel AK, Shah MP, Parikh IK, Joshi CG (2016) Isolation and characterization of novel multifunctional recombinant family 26 glycoside hydrolase from Mehsani buffalo rumen metagenome. Biotechnol Appl Biochem 63(2):257–265.  https://doi.org/10.1002/bab.1358 (Epub 2016 Mar 14)CrossRefGoogle Scholar
  52. Prajapati VS, Purohit HJ, Raje DV, Parmar N, Patel AB, Jones OAH, Joshi CG (2016) The effect of a high-roughage diet on the metabolism of aromatic compounds by rumen microbes: a metagenomic study using Mehsani buffalo (Bubalus bubalis). Appl Microbiol Biotechnol 100(3):1319–1331.  https://doi.org/10.1007/s00253-015-7239-0 (Epub 2015 Dec 28)CrossRefPubMedGoogle Scholar
  53. Privé F, Newbold CJ, Kaderbhai NN, Girdwood SG, Golyshina OV, Golyshin PN, Scollan ND, Huws SA (2015) Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome. Appl Microbiol Biotechnol 99(13):5475–5485.  https://doi.org/10.1007/s00253-014-6355-6 (Epub 2015 Jan 11)CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rashamuse KJ, Visser DF, Hennessy F, Kemp J, Roux-van der Merwe MP, Badenhorst J, Ronneburg T, Francis-Pope R, Brady D (2013) Characterisation of two bifunctional cellulase-xylanase enzymes isolated from a bovine rumen metagenome library. Curr Microbiol 66(2):145–151.  https://doi.org/10.1007/s00284-012-0251-z (Epub 2012 Oct 20)CrossRefGoogle Scholar
  55. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506CrossRefGoogle Scholar
  56. Shedova EN, Lunina NA, Berezina OV, Zverlov VV, Schwarz V, Velikodvorskaia GA (2009) Expression of the genes celA and XylA isolated from a fragment of metagenomic DNA in Escherichia coli. Mol Gen Mikrobiol Virusol 2:28–32 (Article in Russian, abstract in English)Google Scholar
  57. Singh B, Bhat TK, Singh B (2003) Potential therapeutic applications of some antinutritional plant secondary metabolites. J Agric Food Chem 51(19):5579–5597. 10 Sep 2003 (Review)CrossRefGoogle Scholar
  58. Singh B, Gautam SK, Verma V, Kumar M, Singh B (2008) Metagenomics in animal gastrointestinal ecosystem: Potential biotechnological prospects. Anaerobe 14(3):138–44.  https://doi.org/10.1016/j.anaerobe.2008.03.002. Epub 2008 Mar 26 (Review)CrossRefGoogle Scholar
  59. Singh B, Mal G, Marotta F (2017) Designer probiotics: paving the way to living therapeutics. Trends Biotechnol 35(8):679–682.  https://doi.org/10.1016/j.tibtech.2017.04.001 (Epub 2017 May 5)CrossRefGoogle Scholar
  60. Singh KM, Jakhesara SJ, Koringa PG, Rank DN, Joshi CG (2012) Metagenomic analysis of virulence-associated and antibiotic resistance genes of microbes in rumen of Indian buffalo (Bubalus bubalis). Gene 507(2):146–151.  https://doi.org/10.1016/j.gene.2012.07.037 (Epub 2012 Jul 28)CrossRefPubMedGoogle Scholar
  61. Toyoda A, Iio W, Mitsumori M, Minato H (2009) Isolation and identification of cellulose binding proteins from sheep rumen contents. Appl Environ Microbiol 75:1667–1673.  https://doi.org/10.1128/AEM.01838-08CrossRefPubMedPubMedCentralGoogle Scholar
  62. White BA, Lamed R, Bayer EA, Flint HJ (2014) Biomass utilization by gut microbiomes. Annu Rev Microbiol 68:279–296.  https://doi.org/10.1146/annurev-micro-092412-155618. Epub 2014 Jun 16 (Review)CrossRefGoogle Scholar
  63. Xu B, Xu W, Li J, Dai L, Xiong C, Tang X, Yang Y, Mu Y, Zhou J, Ding J, Wu Q, Huang Z (2015) Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC Genom 12(16):174.  https://doi.org/10.1186/s12864-015-1378-7CrossRefGoogle Scholar
  64. Wagner EK, Maynard JA (2018) Engineering therapeutic antibodies to combat infectious diseases. Curr Opin Chem Eng 19:131–141.  https://doi.org/10.1016/j.coche.2018.01.007 (Epub 2018 Mar 7)CrossRefPubMedPubMedCentralGoogle Scholar
  65. Yao J, Chen Q, Zhong G, Cao W, Yu A, Liu Y (2014) Immobilization and characterization of tannase from a metagenomic library and its use for removal of tannins from green tea infusion. J Microbiol Biotechnol 24(1):80–86CrossRefGoogle Scholar
  66. Wallace RJ, Rooke JA, McKain N, Duthie CA, Hyslop JJ, Ross DW, Waterhouse A, Watson M, Roehe R (2015) The rumen microbial metagenome associated with high methane production in cattle. BMC Genom 16:839.  https://doi.org/10.1186/s12864-015-2032-0CrossRefGoogle Scholar
  67. Zhao S, Wang J, Bu D, Liu K, Zhu Y, Dong Z, Yu Z (2010) Novel glycoside hydrolases identified by screening a Chinese Holstein dairy cow rumen-derived metagenome library. Appl Environ Microbiol 76:6701–6705.  https://doi.org/10.1128/AEM.00361-10CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zhou J, Bao L, Chang L, Liu Z, You C, Lu H (2012) Beta-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Lett Appl Microbiol 54:79–87.  https://doi.org/10.1111/j.1472-765X.2011.03175.xCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Birbal Singh
    • 1
    Email author
  • Gorakh Mal
    • 1
  • Sanjeev K. Gautam
    • 2
  • Manishi Mukesh
    • 3
  1. 1.ICAR-Indian Veterinary Research Institute, Regional StationPalampurIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia
  3. 3.Department of Animal BiotechnologyICAR-National Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations