Skip to main content

Sea Ice Modelling

  • Chapter
  • First Online:

Part of the book series: Springer Polar Sciences ((SPPS))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andreas, E. L. (1998). The atmospheric boundary layer over polar marine surfaces. In M. Leppäranta (Ed.), Physics of ice-covered seas (Vol. II, pp. 715–773). Helsinki: Helsinki University Press.

    Google Scholar 

  • Beckmann, A., & Döscher, R. (1997). A method for improved representation of dense water spreading over topography in geopotential-coordinate models. Journal of Physical Oceanography, 27, 581–591.

    Article  Google Scholar 

  • Bi, D., & Marsland, S. J. (2010). Australian climate ocean model (AusCOM) users guide. CAWCR Technical Report, 1(027), 1–82.

    Google Scholar 

  • Bi, D., Dix, M., Marsland, S., O’Farrell, S., Rashid, H., Uotila, P., Hirst, A. C., Eva Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah, N., Franklin, F., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R., Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies, S. M., Hill, R., Harris, C., & Puri, K. (2013). The ACCESS coupled model: Description, control climate and evaluation. Australian Meteorological and Oceanographic Journal, 63(1), 41–64. https://doi.org/10.22499/2.6301.004.

    Article  Google Scholar 

  • Bischof, J. (2000). Ice drift, ocean circulation and climate change. Chichester: Springer-Praxis, 215 p.

    Google Scholar 

  • Bitz, C. M. (2008). Some aspects of uncertainty in predicting sea ice thinning. In E. T. DeWeaver, C. M. Bitz, & L.-B. Tremblay (Eds.), Arctic Sea ice decline: Observations, projections, mechanisms, and implications (Geophysical Monograph Series) (Vol. 180, pp. 63–67). Washington, DC: American Geophysical Union.

    Google Scholar 

  • Bitz, C. M., & Lipscomb, W. H. (1999). An energy-conserving thermodynamic model of sea ice. Journal of Geophysical Research, 104, 15 669–15 677.

    Article  Google Scholar 

  • Blanke, B., & Delecluse, P. (1993). Low frequency variability of the tropical Atlantic Ocean simulated by a general circulation model with mixed layer physics. Journal of Physical Oceanography, 23, 1363–1388.

    Article  Google Scholar 

  • Boé, J., Hall, A., & Qu, X. (2009). September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nature Geoscience, 2, 341–343. https://doi.org/10.1038/ngeo467.

    Article  Google Scholar 

  • Boé, J., Hall, A., & Qu, X. (2010). Sources of spread in simulations of Arctic sea ice loss over the twenty-first century. A letter. Climatic Change, 99, 637–645. https://doi.org/10.1007/s10584-010-9809-6.

    Article  Google Scholar 

  • Bouillon, S., Morales Maqueda, M. A., Legat, V., & Fichefet, T. (2009). An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids. Ocean Modelling, 27, 174–184.

    Article  Google Scholar 

  • Bouillon, S., Fichefet, T., Legat, V., & Madec, G. (2013). The elastic– viscous–plastic method revisited. Ocean Modelling, 71, 2–12. https://doi.org/10.1016/j.ocemod.2013.05.013.

    Article  Google Scholar 

  • Brodeau, L., Barnier, B., Treguier, A.-M., Penduff, T., & Gulev, S. (2010). An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modelling, 31, 88–104. https://doi.org/10.1016/j.ocemod.2009.10.005.

    Article  Google Scholar 

  • Bromwich, D. H., Nicolas, J. P., & Monaghan, A. J. (2011). An assessment of precipitation changes over antarctica and the southern ocean since 1989 in contemporary global reanalysis. Journal of Climate, 24(16), 4189–4209. https://doi.org/10.1175/2011JCLI4074.1.

    Article  Google Scholar 

  • Campin, J. M., Marshall, J., & Ferreira, D. (2008). Sea ice-ocean coupling using a rescaled vertical coordinate z. Ocean Modelling, 24, 1–14. https://doi.org/10.1016/j.ocemod.2008.05.005.

    Article  Google Scholar 

  • Cavalieri, D., Parkinson, C., Gloersen, P., & Zwally, H. J. (1996, updated 2008). Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data, 1978–2007. Boulder: National Snow and Ice Data Center. Digital media.

    Google Scholar 

  • Cheng, B., Mäkynen, M., Similä, M., Rontu, L., & Vihma, T. (2013). Modelling snow and ice thickness in the coastal Kara Sea, Russian Arctic. Annals of Glaciology, 54(62), 105–113.

    Article  Google Scholar 

  • Chevallier, M., Smith, G., Dupont, F., Lemieux, J.-F., Forget, G., Fujii, Y., Hernandez, F., Msadek, R., Peterson, K. A., Storto, A., Toyoda, T., Valdivieso, M., Vernieres, G., Zuo, H., Balmaseda, M., Chang, Y.-S., Ferry, N., Garric, G., Haines, K., Keeley, S., Kovach, R. M., Kuragano, T., Masina, S., Tang, Y., Tsujino, H., & Wang, X. (2017). Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project. Climate Dynamics, 49(3), 1107–1136. https://doi.org/10.1007/s00382-016-2985-y.

    Article  Google Scholar 

  • Comiso, J. C., & Nishio, F. (2008). Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. Journal of Geophysical Research, 113, C02S07.

    Google Scholar 

  • Coon, M. D. (1980). A review of AIDJEX modeling. In R. S. Pritchard (Ed.), Proc. ICSI/AIDJEX Symp. on sea ice processes and models (pp. 12–23). Seattle: University of Washington.

    Google Scholar 

  • Coon, M. D., Maykut, G. A., Pritchard, R. S., Rothrock, D. A., & Thorndike, A. S. (1974). Modeling the pack ice as an elastic-plastic material. AIDJEX Bull, 24, 1–105.

    Google Scholar 

  • Coon, M. D., Knoke, G. S., Echert, D. C., & Pritchard, R. S. (1998). The architecture of an anisotropic elastic-plastic sea ice mechanics constitutive law. Journal of Geophysical Research, 103(C10), 21,915–21,925.

    Article  Google Scholar 

  • Curry, J. A., & Webster, P. J. (1999). Thermodynamics of atmospheres and oceans (International Geophysics Series 65). London: Academic.

    Google Scholar 

  • Danabasoglu, G., Yeager, S. G., Bailey, D., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Böning, C., Bozec, A., Canuto, V. M., Cassou, C., Chassignet, E., Coward, A. C., Danilov, S., Diansky, N., Drange, H., Farneti, R., Fernandez, E., Fogli, P. G., Forget, G., Fujii, Y., Griffies, S. M., Gusev, A., Heimbach, P., Howard, A., Jung, T., Kelley, M., Large, W. G., Leboissetier, A., Lu, J., Madec, G., Marsland, S. J., Masina, S., Navarra, A., Nurser, A. J. G., Pirani, A., Salas y Mélia, D., Samuels, B. L., Scheinert, M., Sidorenko, D., Treguier, A.-M., Tsujino, H., Uotila, P., Valcke, S., Voldoire, A., & Wangi, Q. (2014). North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: Mean states. Ocean Modelling, 73, 76–107. https://doi.org/10.1016/j.ocemod.2013.10.005.

    Article  Google Scholar 

  • Danabasoglu, G., Yeager, S. G., Kim, W. H., Behrens, E., Bi, D., Biastoch, A., Bleck, R., Böning, C., Bozec, A., Canuto, V., Cassou, C., Chassignet, E., Coward, A., Danilov, S., Diansky, N., Drange, H., Farneti, R., Fernandez, E., Fogli, P., Forget, G., Fujii, Y., Griffies, S. M., Gusev, A., Heimbach, P., Howard, A., Ilicak, M., Jung, T., Karspeck, A., Kelley, M., Large, W. G., Leboissetier, A., Lu, J., Madec, G., Marsland, S. J., Masina, S., Navarra, A., Nurser, G., Pirani, A., Romanou, A., Salas y Mélia, D., Samuels, B. L., Scheinert, M., Sidorenko, D., Sun, S., Treguier, A. M., Tsujino, H., Uotila, P., Valcke, S., Voldoire, A., Wang, Q., & Yashayaev, I. (2016). North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Model, 97, 65–90. https://doi.org/10.1016/j.ocemod.2015.11.007.

    Article  Google Scholar 

  • Dansereau, V., Weiss, J., Saramito, P., & Lattes, P. (2015). A Maxwell–Elasto-Brittle rheology for sea ice modelling. Mercator Ocean Quarterly Newsletter, 51, 35–40.

    Google Scholar 

  • Davis, R. O., & Selvadurai, A. P. S. (Eds.). (2012). Elasticity and geomechanics. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., & Iudicone, D. (2004). Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. Journal of Geophysical Research, 109, C12003. https://doi.org/10.1029/2004JC002378.

    Article  Google Scholar 

  • Dee, D. P., Uppala, S., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., & Vitart, F. (2011). The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  • Dethloff, B. K., Abegg, C., Rinke, A., Hebestadt, I., & Romanov, V. F. (2001). Sensitivity of Arctic climate simulations to different boundary-layer parameterizations in a regional climate model. Tellus, 5, 1–26.

    Google Scholar 

  • DeWeaver, E. T., Hunke, E. C., & Holland, M. M. (2008). Comment on “on the reliability of simulated Arctic sea ice in global climate models” by I. Eisenman, N. Untersteiner, and J. S. Wettlaufer. Geophysical Research Letters, 35, L04501. https://doi.org/10.1029/2007GL031325.

    Article  Google Scholar 

  • Divine, D. V. (2003). Peculiarities of shore-fast ice formation and destruction in the Kara Sea. PhD thesis. Bergen: University of Bergen.

    Google Scholar 

  • Doronin, Y. P. (1970). On a method of calculating the compactness and drift of ice floes. Tr. Arkt. Antarkt. Inst., 291, 5–17. [English transl in AIDJEX Bull. 3, 22–39].

    Google Scholar 

  • Downes, S. M., Farneti, R., Uotila, P., et al. (2015). An assessment of Southern Ocean water masses and sea ice during 1988–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 94, 67–94. https://doi.org/10.1016/j.ocemod.2015.07.022.

    Article  Google Scholar 

  • Drucker, D. C. (1950). Some implications of work hardening and ideal plasticity. Quantitative Applied Mathematics, 7, 411–418.

    Article  Google Scholar 

  • Dukhovskoy, D. S., Ubnoske, J., Blanchard-Wrigglesworth, E., Hiester, H. R., & Proshutinsky, A. (2015). Skill metrics for evaluation and comparison of sea ice models. Journal of Geophysical Research, Oceans, 120, 5910–5931. https://doi.org/10.1002/2015JC010989.

    Article  Google Scholar 

  • Eicken, H., & Lange, M. (1989). Development and properties of sea ice in the coastal regime of the southern Weddell Sea. Journal of Geophysical Research, 94, 8193–8206.

    Article  Google Scholar 

  • Ekman, V. W. (1902). Om jordrotationens inverkan på vindströmmar i hafvet. Nyt Magasin för Naturvidenskab B, 40, 1.

    Google Scholar 

  • Farneti, R., Downes, S. M., Griffies, S. M., Marsland, S. J., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Bӧning, C., Bozec, A., Canuto, V. M., Chassignet, E., Danabasoglu, G., Danilov, S., Diansky, N., Drange, H., Fogli, P. G., Gusev, A., Hallberg, R. W., Howard, A., Ilicak, M., Jung, T., Kelley, M., Large, W. G., Leboissetier, A., Long, M., Lu, J., Masina, S., Mishra, A., Navarra, A., Nurser, A. J. G., Patara, L., Samuels, B. L., Sidorenko, D., Tsujino, H., Uotila, P., Wang, Q., & Yeager, S. G. (2015). An assessment of Antarctic circumpolar current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 93, 84–120. https://doi.org/10.1016/j.ocemod.2015.07.009.

    Article  Google Scholar 

  • Fetterer, F., Knowles, K., Meier, W., & Savoie, M. (2002, updated 2012). Sea ice index. Digital media. Boulder: National Snow and Ice Data Center.

    Google Scholar 

  • Fetterer, F., Knowles, K., Meier, W., & Savoie, M. updated daily. (2016). Sea ice index, Version 2. [Monthly Sea Ice Extent from 1980 to 2015, Northern Hemisphere]. Boulder:. NSIDC: National Snow and Ice Data Center. https://doi.org/10.7265/N5736NV7

  • Fichefet, T., & Morales-Maqueda, A. M. (1997). Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. Journal of Geophysical Research, 102(C6), 12609. https://doi.org/10.1029/97JC00480.

    Article  Google Scholar 

  • Fichefet, T., & Morales-Maqueda, A. M. (1999). Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Climate Dynamics, 15(4), 251–268.

    Article  Google Scholar 

  • Flocco, D., Schroeder, D., Feltham, D. L., & Hunke, E. C. (2012). Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. Journal of Geophysical Research, 117(C9), C09032. https://doi.org/10.1029/2012JC008195.

    Article  Google Scholar 

  • Gaspar, P., Gregoris, Y., & Lefevre, J.-M. (1990). A simple eddy kinetic energy model for simulations of the oceanic vertical mixing tests at station papa and long-term upper ocean study site. Journal of Geophysical Research, 95, 16179–16193.

    Article  Google Scholar 

  • Giles, K. A., Laxon, S. W., & Ridout, A. L. (2008). Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum. Geophysical Research Letters, 35, L22502. https://doi.org/10.1029/2008GL035710.

    Article  Google Scholar 

  • Girard, L., Bouillon, S., Weiss, J., Amitrano, D., Fichefet, T., & Legat, V. (2011). A new modelling framework for sea-ice mechanics based on elasto-brittle rheology. Annals of Glaciology, 52, 123–132.

    Article  Google Scholar 

  • Goldstein, R. V., Osipenko, N. M., & Leppäranta, M. (2009). Relaxation scales and the structure of fractures in the dynamics of sea ice. Cold Regions Science and Technology, 58, 29–35.

    Article  Google Scholar 

  • Griffies, S. M. (2004). Fundamentals of ocean climate models. Princeton: Princeton University Press, 528p.

    Google Scholar 

  • Griffies, S. M., Biastoch, A., Böning, C., Bryan, F., Danaba-Soglu, G., Chassignet, E. P., England, M. E., Gerdes, R., Haak, H., Hallberg, R. W., Hazeleger, W., Jungclaus, J., Large, W. G., Madec, G., Pirani, A., Samuels, B. L., Scheinert, M., Sen Gupta, A., Severijns, C. A., Simmons, H. L., Treguier, A. M., Winton, M., Yeager, S., & Yin, J. (2009). Coordinated ocean– ice reference experiments (COREs). Ocean Modelling, 26, 1–46. https://doi.org/10.1016/j.ocemod.2008.08.007.

    Article  Google Scholar 

  • Griffies, S. M., Yin, J., Durack, P. J., Goddard, P., Bates, S. C., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Böning, C. W., Bozec, A., Chassignet, E., Danabasoglu, G., Danilov, S., Domingues, C. M., Drange, H., Farneti, R., Fernandez, E., Greatbatch, R. J., Holland, D. M., Ilicak, M., Large, W. G., Lorbacher, K., Lu, J., Marsland, S. J., Mishra, A., Nurser, G., Salas, D., Mélia, Y., Palter, J. B., Samuels, B. L., Schröter, J., Schwarzkopf, F. U., Sidorenko, D., Treguier, A. M., Tseng, Y., Tsujino, H., Uotila, P., Valcke, S., Voldoire, A., Wang, Q., Winton, M., & Zhang, X. (2014). An assessment of global and regional sea level for years 1993–2007 in a suite of interannual core-II simulations. Ocean Modelling, 78, 35–89. https://doi.org/10.1016/j.ocemod.2014.03.004.

    Article  Google Scholar 

  • Haapala, J., & Leppäranta, M. (1996). Simulations of the Baltic Sea ice season with a coupled ice-ocean model. Tellus, 48A, 622–643.

    Article  Google Scholar 

  • Hallberg, R. (2013). Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modelling, 72, 92–103. https://doi.org/10.1016/j.ocemod.2013.08.007.

    Article  Google Scholar 

  • Harr, M. E. (1977). Mechanics of particulate media. A probabilistic approach. New York: McGraw-Hill.

    Google Scholar 

  • Hewitt, H. T., Copsey, D., Culverwell, I. D., Harris, C. M., Hill, R. S. R., Keen, A. B., McLaren, A. J., & Hunke, E. C. (2011). Design and implementation of the infrastructure of HadGEM3: The next- generation met office climate modelling system. Geoscientific Model Development, 4, 223–253. https://doi.org/10.5194/gmd-4-223-2011.

    Article  Google Scholar 

  • Hibler, W. D., III. (1979). A dynamic-thermodynamic sea ice model. Journal of Physical Oceanography, 9, 815–846.

    Article  Google Scholar 

  • Hibler, W. D., III. (1986). Ice dynamics. In N. Untersteiner (Ed.), Geophysics of sea ice (pp. 577–640). New York: Plenum Press.

    Chapter  Google Scholar 

  • Hibler, W. D., III. (2001). Sea ice fracturing on the large scale. Engineering Fracture Mechanics, 68, 2013–2043.

    Article  Google Scholar 

  • Hibler, W. D., III, Weeks, W. F., & Mock, S. J. (1972). Statistical aspects of sea-ice ridge distributions. Journal of Geophysical Research, 77, 5954–5970.

    Article  Google Scholar 

  • Hibler, W. D., III, Ackley, S. F., Crowder, W. K., McKim, H. L., & Anderson, D. M. (1974). Analysis of shear zone ice deformation in the Beaufort Sea using satellite imagery. In J. C. Reed & J. E. Sater (Eds.), The coast and shelf of the Beaufort Sea (pp. 285–296). Arlington: The Arctic Institute of North America.

    Google Scholar 

  • Holland, P. R., & Kwok, R. (2012). Wind-driven trends in Antarctic sea- ice drift. Nature Geoscience, 5, 1–4. https://doi.org/10.1038/ngeo1627.

    Article  Google Scholar 

  • Holland, M. M., Bitz, C. M., Hunke, E. C., Lipscomb, W. H., & Schramm, J. L. (2006). Influence of the sea ice thickness distribution on polar climate in CCSM3. Journal of Climate, 19, 2398–2414.

    Article  Google Scholar 

  • Holland, M. M., Serreze, M. C., & Stroeve, J. (2008). The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Climate Dynamics, 34, 185–200. https://doi.org/10.1007/s00382-008-0493-4.

    Article  Google Scholar 

  • Hopkins, M. (1994). On the ridging of intact lead ice. Journal of Geophysical Research, 99(C8), 16,351–16,360.

    Article  Google Scholar 

  • Hopkins, M., & Hibler, W. D., III. (1991). On the ridging of a thin sheet of lead ice. Journal of Geophysical Research, 96, 4809–4820.

    Article  Google Scholar 

  • Huang, W. F., Li, Z., Han, H., Niu, F., Lin, Z., & Leppäranta, M. (2012). Structural analysis of thermokarst lake ice in Beiluhe Basin, Qinghai–Tibet Plateau. Cold Regions Science and Technology, 72, 33–42.

    Article  Google Scholar 

  • Hunke, E. C. (2010). Thickness sensitivities in the CICE sea ice model. Ocean Modelling, 34(3–4), 137–149.

    Article  Google Scholar 

  • Hunke, E., & Dukewicz, J. K. (1997). An elastic-viscous-plastic model for sea ice dynamics. Journal of Physical Oceanography, 27, 1849–1847.

    Article  Google Scholar 

  • Hunke, E. C., & Lipscomb, W.H. (2010). CICE: The Los Alamos sea ice model documentation and software user’s manual LA-CC-06-012. Research Report.

    Google Scholar 

  • Hunke, E. C., Lipscomb, W.H., Turner, A.K., Jeffery, N., & Elliott, S. (2015). CICE: The Los Alamos sea ice model documentation and software user’s manual LA-CC-06-012, 116.

    Google Scholar 

  • IPCC: Climate Change 2007. (2007). The physical science basis. In S. Solomon, D. Quin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press, 996 p.

    Google Scholar 

  • IPCC: Climate Change 2013. (2013). The physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge/New York., 1535 p: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.

    Chapter  Google Scholar 

  • Jeffery, N., Hunke, E. C., & Elliott, S. M. (2011). Modeling the transport of passive tracers in sea ice. Journal of Geophysical Research, 116(C7), 1–15. https://doi.org/10.1029/2010JC006527.

    Article  Google Scholar 

  • Kattsov, V., Ryabinin, V., Overland, J., Serreze, M., Visbeck, M., Walsh, J., Meier, W., & Zhang, X. (2010). Arctic sea ice change: A grand challenge of climate science. Journal of Glaciology, 56(200), 1115–1121.

    Article  Google Scholar 

  • Kolmogorov, A. N. (1941). Über das logaritmisch normale der Dimensionen der Teilchen bei Zerstückelung. Comptes rendus de l’Académie des Sciences U R S S, 31, 99.

    Google Scholar 

  • Kurtz, N. T., Farrell, S. L., Studinger, M., Galin, N., Harbeck, J. P., Lindsay, R., Onana, V. D., Panzer, B., & Sonntag, J. G. (2013). Sea ice thickness, freeboard, and snow depth products from operation IceBridge airborne data. The Cryosphere, 7, 1035–1056. https://doi.org/10.5194/tc-7-1035-2013.

    Article  Google Scholar 

  • Kwok, R., & Cunningham, G. F. (2010). Contribution of melt in the Beaufort Sea to the decline in Arctic multiyear sea ice coverage: 1993–2009. Geophysical Research Letters, 37, L20501. https://doi.org/10.1029/2010GL044678.

    Article  Google Scholar 

  • Kwok, R., & Rothrock, D. A. (2009). Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophysical Research Letters, 36, L15501. https://doi.org/10.1029/2009GL039035.

    Article  Google Scholar 

  • Kwok, R., & Untersteiner, N. (2011). The thinning of Arctic sea ice. Physics Today, 64(4), 36–41.

    Article  Google Scholar 

  • Kwok, R., Cunningham, G. F., Wensnahan, M., Rigor, I., Zwally, H. J., & Yi, D. (2009). Thinning and volume loss of the Arctic Ocean sea ice cover: 2003-2008. Journal of Geophysical Research, 114, C07005. https://doi.org/10.1029/2009JC005312.

    Article  Google Scholar 

  • Langhorne, P. J., Hughes, K. G., Gough, A. J., Smith, I. J., Williams, M. J. M., Robinson, N. J., Stevens, C. L., Rack, W., Price, D., Leonard, G. H., Mahoney, A. R., Haas, C., & Haskell, T. G. (2015). Observed platelet ice distribution in Antarctic sea ice: An index for ocean-ice shelf heat flux. Geophysical Research Letters, 42(13), 5442–5451. https://doi.org/10.1002/2015GL064508.

    Article  Google Scholar 

  • Large, W. G., & Yeager, S. G. (2004). Diurnal to decadal global forcing for ocean and sea ice models: The data sets and flux climatologies. Technical Report NCAR/TN460+STR, CGD Division of the National Centre for Atmospheric Research (NCAR).

    Google Scholar 

  • Launiainen, J., & Cheng, B. (1998). Modelling of ice thermodynamics in natural water bodies. Cold Regions Science and Technology, 27(3), 153–178.

    Article  Google Scholar 

  • Lavergne, T., Eastwood, S., Teffah, Z., Schyberg, H., & Breivik, L.-A. (2010). Sea ice motion from low resolution satellite sensors: An alternative method and its validation in the Arctic. Journal of Geophysical Research, 115, C10032. https://doi.org/10.1029/2009JC005958.

    Article  Google Scholar 

  • Laxon, S., Peacock, N., & Smith, D. (2003). High interannual variability of sea ice thickness in the Arctic region. Nature, 425, 947–950. https://doi.org/10.1038/nature02050.

    Article  Google Scholar 

  • Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, V., Schweiger, A., Zhang, J., Haas, C., Hendricks, V., Krishfield, V., Kurtz, N., Farrell, S., & Davidson, M. (2013). CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophysical Research Letters, 40, 732–737. https://doi.org/10.1002/grl.50193.

    Article  Google Scholar 

  • Lensu, M. (2003). The evolution of ridged ice fields (Report M-280). Espoo: Helsinki University of Technology, Ship Laboratory, 140 p.

    Google Scholar 

  • Leppäranta, M. (1981). An ice drift model for the Baltic Sea. Tellus, 33(6), 583–596.

    Article  Google Scholar 

  • Leppäranta, M. (1993). A review of analytical modelling of sea ice growth. Atmosphere-Ocean, 31(1), 123–138.

    Article  Google Scholar 

  • Leppäranta, M. (2011). The drift of sea ice (2nd ed.). Heidelberg: Springer-Praxis.

    Book  Google Scholar 

  • Leppäranta, M. (2013). Land-ice interaction in the Baltic Sea. Estonian Journal of Earth Sciences, 62(1), 2–14.

    Article  Google Scholar 

  • Leppäranta, M. (2015). Freezing of lakes and the evolution of their ice cover. Heidelberg: Springer-Praxis, 301 p.

    Book  Google Scholar 

  • Leppäranta, M., & Myrberg, K. (2009). Physical oceanography of the Baltic Sea. Heidelberg: Springer-Praxis, 378 p.

    Book  Google Scholar 

  • Leppäranta, M., & Zhang, Z. (1992). A viscous-plastic test model for Baltic Sea ice dynamics. Helsinki: Finnish Institute of Marine Research, Internal Report 1992(3).

    Google Scholar 

  • Leppäranta, M., Lensu, M., Kosloff, P., & Veitch, B. (1995). The life story of a first-year sea ice ridge. Cold Regions Science and Technology, 23, 279–290.

    Article  Google Scholar 

  • Lindsay, R., Schweiger, A. J. (2013, updated 2017). Unified sea ice thickness climate data record, 1947 onward, version 1. Boulder: NSIDC: National Snow and Ice Data Center. https://doi.org/10.7265/N5D50JXV

  • Løset, S. (1993). Some aspects of floating ice related sea surface operations in the Barents Sea. Ph.D. thesis, University of Trondheim, Norway.

    Google Scholar 

  • Madec, G., & The NEMO Team (2015). NEMO ocean engine – version 3.6 stable. Note du Pôle de modélisation de l’Institut Pierre-Simon Laplace (IPSL), France, Note No 27, 401 p.

    Google Scholar 

  • Mahlstein, I., & Knutti, R. (2011). Ocean heat transport as a cause for model uncertainty in projected Arctic warming. Journal of Climate, 24, 1451–1460.

    Article  Google Scholar 

  • Mahlstein, I., & Knutti, R. (2012). September Arctic sea ice predicted to disappear near 2°C global warming above present. Journal of Geophysical Research-Atmospheres, 117, D06104. https://doi.org/10.1029/2011jd016709.

    Article  Google Scholar 

  • Makshtas, A.P. (1984). The heat budget of Arctic ice in the winter. Gidrometeoizdat, Leningrad. Engl. Transl. by International Glaciological Society, Cambidge, U.K.

    Google Scholar 

  • Makshtas, A. P., Bogorodskiy, P. V., & Kustov, V. Y. (2012). Rapid melt of landfast ice in Sogo Bey (Tiksi Gulf) during spring 2011 [in Russian]. Problems of Arctic and Antarctic, 1, 37–47.

    Google Scholar 

  • Manabe, S., & Wetherald, R. (1975). The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of the Atmospheric Sciences, 32, 3–15.

    Article  Google Scholar 

  • Massonnet, F., Fichefet, T., Goosse, H., Vancoppenolle, M., Mathiot, P., & König Beatty, C. (2011). On the influence of model physics on simulations of Arctic and Antarctic sea ice. The Cryosphere, 5, 687–699. https://doi.org/10.5194/tc-5-687-2011.

    Article  Google Scholar 

  • Massonnet, F., Fichefet, T., Goosse, H., Bitz, C. M., Philippon-Berthier, G., Holland, M. M., & Barriat, P.-Y. (2012). Constraining projections of summer Arctic sea ice. The Cryosphere, 6, 1383–1394. https://doi.org/10.5194/tc-6-1383-2012.

    Article  Google Scholar 

  • Maykut, G. A., & Untersteiner, N. (1971). Some results from a time-dependent, thermodynamic model of sea ice. Journal of Geophysical Research, 76, 1550–1575.

    Article  Google Scholar 

  • McPhee, M. G. (2008). Air–ice–ocean interaction: Turbulent ocean boundary layer exchange processes. Berlin: Springer, 215 pp.

    Book  Google Scholar 

  • Meier, W., Fetterer, F., Knowles, K., Savoie, M., & Brodzik, M. J. (2006, updated 2008). Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data, 2008. Boulder: National Snow and Ice Data Center. Digital media.

    Google Scholar 

  • Meier, W., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., & Stroeve, J. (2013, updated 2015). NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 2. Boulder: National Snow and Ice Data Center [accessed 10 March 2016].

    Google Scholar 

  • Meleshko, V. P., Johannessen, O. M., Baidin, A. V., Pavlova, T. V., & Govorkova, V. A. (2016). Arctic amplification: Does it impact the polar jet stream? Tellus A, 68, 32330. https://doi.org/10.3402/tellusa.v68.32330.

    Article  Google Scholar 

  • Melia, N., Haines, K., & Hawkins, E. (2015). Improved Arctic sea ice thickness projections using bias corrected CMIP5 simulations. The Cryosphere, 9, 2237–2251. https://doi.org/10.5194/tc-9-2237-2015.

    Article  Google Scholar 

  • Mock, S. J., Hartwell, A., & Hibler, W. D., III. (1972). Spatial aspects of pressure ridge statistics. Journal of Geophysical Research, 77, 5945–5953.

    Article  Google Scholar 

  • Nansen, F. (1902) The oceanography of the North Polar Basin. Norwegian North Polar Expedition 1893–1896. Scientific Results (III, 9,). Longman Green & Co., Kristiania.

    Google Scholar 

  • Notz, D., Haumann, F. A., Haak, H., Jungclaus, J. H., & Marotzke, J. (2013). Arctic sea-ice evolution as modeled by Max Planck Institute for Meteorology’s earth system model. Journal of Advances in Modeling Earth Systems, 5, 173–194. https://doi.org/10.1002/jame.20016.

    Article  Google Scholar 

  • Overland, J. E., & Wang, M. (2013). When will the summer Arctic be nearly sea ice free? Geophysical Research Letters, 40, 2097–2101. https://doi.org/10.1002/grl.50316.

    Article  Google Scholar 

  • Ovsienko, S. (1976). Numerical modeling of the drift of ice. Izv. Atmospheric and Oceanic Physics, 12(11), 1201–1206.

    Google Scholar 

  • Ovsienko, S., Zatsepa, S., Ivchenko, A. (1999). Study and modelling of behaviour and spreading of oil in cold water and in ice conditions. In: Proceedings of 15th Conference on Port and Ocean Engineering under Arctic Conditions, Vol. 2. Espoo, Finland.

    Google Scholar 

  • Palmer, A., & Croasdale, K. (2012). Arctic offshore engineering. Singapore: World Scientific Publishing.

    Book  Google Scholar 

  • Parmerter, R. R., & Coon, M. D. (1972). Model for pressure ridge formation in sea ice. Journal of Geophysical Research, 77, 6565–6575.

    Article  Google Scholar 

  • Pavlova, T. V., & Kattsov, V. M. (2013). World ocean ice cover as simulated with CMIP5 models. MGO Proceedings, 568, 7–25.

    Google Scholar 

  • Perovich, D. K. (1998). The optical properties of the sea ice. In M. Leppäranta (Ed.), Physics of ice-covered seas (pp. 195–230). Helsinki: Helsinki University Printing House.

    Google Scholar 

  • Perovich, D., & Jones, K. F. (2014). The seasonal evolution of sea ice floe size distribution. Journal of Geophysical Research, Oceans, 119(12), 8767–8777. https://doi.org/10.1002/2014JC010136.

    Article  Google Scholar 

  • Pfirman, S. L., Eicken, H., Bauch, D., & Weeks, W. F. (1995). The potential transport of pollutants by Arctic sea ice. The Science of the Total Environment, 159, 129–146.

    Article  Google Scholar 

  • Pirazzini, R. (2008). Factors controlling the surface energy budget over snow and ice. Finnish Meteorological Institute Contributions, 75, 1–55. Retrieved from http://www.doria.fi/handle/10024/42713

  • Pithan, F., & Mauritsen, T. (2014). Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7, 181–184.

    Article  Google Scholar 

  • Polyakov, I. V., Alekseev, G. V., Bekryaev, R. V., Bhatt, U. S., Colony, R., Johnson, M. A., Karklin, V. P., Walsh, D., & Yulin, A. V. (2003). Long-term ice variability in Arctic marginal seas. Journal of Climate, 16(12), 2078–2085.

    Article  Google Scholar 

  • Prather, M. (1986). Numerical advection by conservation of second-order moments. Journal of Geophysical Research, 91, 6671–6681.

    Article  Google Scholar 

  • Pritchard, R. S. (1975). An elastic-plastic constitutive law for sea ice. Journal of Applied Mechanics, 42E, 379–384.

    Article  Google Scholar 

  • Rampal, P., Weiss, J., Dubois, C., & Campin, J.-M. (2011). IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline. Journal of Geophysical Research, 116, C00D07. https://doi.org/10.1029/2011jc007110.

    Article  Google Scholar 

  • Rampal, P., Bouillon, S., Ólason, E., & Morlighem, M. (2015). neXtSIM: A new Lagrangian sea ice model. The Cryosphere Discussions, 9(5), 5885–5941. https://doi.org/10.5194/tcd-9-5885-2015.

    Article  Google Scholar 

  • Rayner, N. A., Parkler, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., & Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperatures since the late nineteenth century. Journal of Geophysical Research, 108(D14), 4407. https://doi.org/10.1029/2002JD002670.

    Article  Google Scholar 

  • Reimnitz, E., Eicken, H., & Martin, T. (1995). Multiyear fast ice along the Taymyr Peninsula, Siberia. Arctic, 48(4), 359–367.

    Article  Google Scholar 

  • Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax, V. (2007). Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20(22), 5473–5496. https://doi.org/10.1175/2007JCLI1824.1.

    Article  Google Scholar 

  • Rothrock, D. A. (1975a). The energetics of the plastic deformation of pack ice by ridging. Journal of Geophysical Research, 80(33), 4514–4519.

    Article  Google Scholar 

  • Rothrock, D. A. (1975b). The mechanical behavior of pack ice. Annual Review of Earth and Planetary Sciences, 3, 317–342.

    Article  Google Scholar 

  • Rothrock, D. A. (1986). Ice thickness distribution – measurement and theory. In N. Untersteiner (Ed.), Geophysics of sea ice (pp. 551–575). New York: Plenum Press.

    Chapter  Google Scholar 

  • Rothrock, D. A., & Thorndike, A. S. (1984). Measuring the sea ice floe size distribution. Journal of Geophysical Research, 89(C4), 6477–6486.

    Article  Google Scholar 

  • Rothrock, D. A., Percival, D. B., & Wensnahan, M. (2008). The decline in arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data. Journal of Geophysical Research, 113, C05003. https://doi.org/10.1029/2007JC004252.

    Article  Google Scholar 

  • Rousset, C., Vancoppenolle, M., Madec, G., Fichefet, T., Flavoni, S., Barthélemy, A., Benshila, R., Chanut, J., Levy, C., Masson, S., & Vivier, F. (2015). The Louvain-La-Neuve sea ice model LIM3.6: Global and regional capabilities. Geoscientific Model Development, 8, 2991–3005. https://doi.org/10.5194/gmd-8-2991-2015.

    Article  Google Scholar 

  • Salas-Mélia, D., Chauvin, F., Déqué, M., Douville, H., Gueremy, J. F., Marquet, P., Planton, S., Royer, J. F., & Tyteca, S. (2005). Description and validation of the CNRM-CM3 global coupled model, CNRM Tech. Rep. 103.

    Google Scholar 

  • Saloranta, T. (2000). Modeling the evolution of snow, snow ice and ice in the Baltic Sea. Tellus, 52A, 93–108.

    Article  Google Scholar 

  • Sanderson, T. J. O. (1988). Ice mechanics. In Risks to offshore structures. Boston: Graham and Trotman, 253 p.

    Google Scholar 

  • Schulson, E. (2004). Compressive shear faults within arctic sea ice: Fracture on scales large and small. Journal of Geophysical Research, 109, C07016. https://doi.org/10.1029/2003JC002108.

    Article  Google Scholar 

  • Schweiger, A., Lindsay, R., Zhang, J., Steele, M., & Stern, H. (2011). Uncertainty in modeled arctic sea ice volume. Journal of Geophysical Research, 116, C00D06. https://doi.org/10.1029/2011JC007084.

    Article  Google Scholar 

  • Semtner, A. (1976). A model for the thermodynamic growth of sea ice in numerical investigations of climate. Journal of Physical Oceanography, 6(3), 379–389.

    Article  Google Scholar 

  • Serreze, M. C., & Barry, R. G. (2011). Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77, 85–96.

    Article  Google Scholar 

  • Serreze, M. C., Barrett, A. P., Slater, A. G., Steele, M., Zhang, J., & Trenberth, K. E. (2007). The large-scale energy budget of the Arctic. Journal of Geophysical Research, 112, D11122. https://doi.org/10.1029/2006JD008230.

    Article  Google Scholar 

  • Shen, H. H., Hibler, W. D., III, & Leppäranta, M. (1986). On applying granular flow theory to a deforming broken ice field. Acta Mechanica, 63, 143–160.

    Article  Google Scholar 

  • Shirasawa, K., Leppäranta, M., Saloranta, T., Polomoshnov, A., Surkov, G., & Kawamura, T. (2005). The thickness of landfast ice in the Sea of Okhotsk. Cold Regions Science and Technology, 42, 25–40.

    Article  Google Scholar 

  • Smedsrud, L. H., Sirevaag, A., Kloster, K., Sorteberg, A., & Sandven, S. (2011). Recent wind driven high sea ice area export in the Fram Strait contributes to Arctic sea ice decline. The Cryosphere, 5, 821–829. https://doi.org/10.5194/tc-5-821-2011.

    Article  Google Scholar 

  • Sodhi, D. (2015). Land-ice interaction: Ice pile up and ride up on land. In Encyclopedia of life science support systems. Cold Region Science and Marine Technology. Unesco.

    Google Scholar 

  • Song, M.-R. (2016). Change of Arctic sea-ice volume and its relationship with sea-ice extent in CMIP5 simulations. Atmospheric and Oceanic Science Letters, 9(1), 22–30. https://doi.org/10.1080/16742834.2015.1126153.

    Article  Google Scholar 

  • Squire, V. (1998). The marginal ice zone. In M. Leppäranta (Ed.), Physics of ice-covered seas (Vol. 1, pp. 381–446). Helsinki: Helsinki University Press.

    Google Scholar 

  • Squire, V. A., Dugan, J., Wadhams, P., Rottier, P. J., & Liu, A. K. (1995). Of ocean waves and sea ice. Annual Review of Fluid Mechanics, 27, 115–168.

    Article  Google Scholar 

  • Steele, M., Morley, R., & Ermold, W. (2001). PHC: A global ocean hydrography with a high-quality Arctic Ocean. Journal of Climate, 14(9), 2079–2087. https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.

    Article  Google Scholar 

  • Stefan, J. (1891). Über die Theorie der Eisbildung, insbesondere über Eisbildung im Polarmeere. Ann. Phys., 42(2), 269–286.

    Article  Google Scholar 

  • Stroeve, J., Holland, M., Meier, W., Scambos, T., & Serreze, M. (2007). Arctic sea ice decline: Faster than forecast. Geophysical Research Letters, 34(9), L09501. https://doi.org/10.1029/2007GL029703.

    Article  Google Scholar 

  • Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., & Meier, W. N. (2012). Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39, L16502. https://doi.org/10.1029/2012GL052676.

    Article  Google Scholar 

  • Stroeve, J., Barrett, A., Serreze, M., & Schweiger, A. (2014). Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness. The Cryosphere, 8, 1839–1854. https://doi.org/10.5194/tc-8-1839-2014.

    Article  Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93, 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1.

    Article  Google Scholar 

  • Thorndike, A. S., Rothrock, D. A., Maykut, G. A., & Colony, R. (1975). The thickness distribution of sea ice. Journal of Geophysical Research, 80, 4501–4513.

    Article  Google Scholar 

  • Timco, G. W., & Burden, R. P. (1997). An analysis of the shapes of sea ice ridges. Cold Regions Science and Technology, 25, 65–77.

    Article  Google Scholar 

  • Timmermann, R., Goosse, H., Madec, G., Fichefet, T., Ethe, C., & Duliere, V. (2005). On the representation of high latitude processes in the orcalim global coupled sea ice-ocean model. Ocean Modelling, 8, 175–201.

    Article  Google Scholar 

  • Timokhov, L. A. (1998). Ice dynamics models. In M. Leppäranta (Ed.), Physics of ice-covered seas (Vol. 1, pp. 343–380). Helsinki: Helsinki University Press.

    Google Scholar 

  • Toyota, T., Takatsuji, S., & Nakayama, M. (2006). Characteristics of sea ice floe size distribution in the seasonal sea ice zone. Geophysical Research Letters, 33(2), L02616. https://doi.org/10.1029/2005GL024556.

    Article  Google Scholar 

  • Tsamados, M., Feltham, D. L., & Wilchinsky, A. V. (2013). Impact of a new anisotropic rheology on simulations of Arctic sea ice. Journal of Geophysical Research, Oceans, 118, 91–107. https://doi.org/10.1029/2012JC007990.

    Article  Google Scholar 

  • Tsamados, M., Feltham, D. L., Schroeder, D., & Flocco, D. (2014). Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice. Journal of Physical Oceanography, 44(5), 1329–1353. https://doi.org/10.1175/JPO-D-13-0215.1.

    Article  Google Scholar 

  • Uotila, P., O’Farrell, S. P. O., Marsland, S. J., & Bi, D. (2012). A sea-ice sensitivity study with a global ocean-ice model. Ocean Modelling, 1(1), 1–59. https://doi.org/10.1016/j.ocemod.2012.04.002.

    Article  Google Scholar 

  • Uotila, P., Vihma, T., & Tsukernik, M. (2013). Close interactions between the Antarctic cyclone budget and large-scale atmospheric circulation. Geophysical Research Letters, 40(12), 3237–3241. https://doi.org/10.1002/grl.50560.

    Article  Google Scholar 

  • Uotila, P., Iovino, D., Vancoppenolle, M., Lensu, M., & Rousset, C. (2017). Comparing sea ice, hydrography and circulation between NEMO3.6 LIM3 and LIM2. Geoscientific Model Development, 10(2), 1009–1031. https://doi.org/10.5194/gmd-10-1009-2017.

    Article  Google Scholar 

  • Uotila, P., Goosse, H., Haines, K., Chevallier, M., Barthélemy, A., Bricaud, C., Carton, J., Fučkar, N., Garric, G., Iovino, D., Kauker, F., Korhonen, M., Lien, V. S., Marnela, M., Massonnet, F., Mignac, D., Peterson, K. A., Sadikni, R., Shi, L., Tietsche, S., Toyoda, T., Xie, J., & Zhang, Z. (2018). An assessment of ten ocean reanalyses in the polar regions. Climate Dynamics, 1, 1–38. https://doi.org/10.1007/s00382-018-4242-z.

    Article  Google Scholar 

  • Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Da Costa Bechtold, V., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Van De Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., & Woollen, J. (2005). The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131(612), 2961–3012.

    Article  Google Scholar 

  • Valcke, S. (2006). OASIS3 user guide (prism 2-5). PRISM Support Init, 3(3), 1–64.

    Google Scholar 

  • Vancoppenolle, M., Bitz, C. M., & Fichefet, T. (2007). Summer land fast sea ice desalination at Point Barrow, Alaska: Model and observations. Journal of Geophysical Research, 112, C04022. https://doi.org/10.1029/2006JC003493.

    Article  Google Scholar 

  • Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., & Morales Maqueda, M. A. (2009a). Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modelling, 27, 33–53.

    Article  Google Scholar 

  • Vancoppenolle, M., Fichefet, T., & Goosse, H. (2009b). Simulating the mass balance and salinity of Arctic and Antarctic sea ice: II. Sensitivity to salinity processes. Ocean Modelling, 27, 54–69.

    Article  Google Scholar 

  • Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., & Zhang, T. (2013). Observations: Cryosphere. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis (Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Venkatesh, S., El-Tahan, H., Comfort, G., & Adelnour, R. (1990). Modelling the behaviour of oil spills in ice-infested waters. Atmosphere-Ocean, 28(3), 303–329.

    Article  Google Scholar 

  • Volkov, V. A., Johannessen, O. M., Borodachev, V. E., Volnov, G. N., Petersson, L. H., Bobylev, L. P., & Kouraev, A. V. (2002). Polar seas oceanography. An integrated study of the Kara Sea. Chichester: Springer-Praxis.

    Google Scholar 

  • Wadhams, P. (1978). Wave decay in the marginal ice zone measured from a submarine. Deep-Sea Research, 25, 23–40.

    Article  Google Scholar 

  • Wadhams, P. (1980a). Ice characteristics in the seasonal sea ice zone. Cold Regions Science and Technology, 2, 37–87.

    Article  Google Scholar 

  • Wadhams, P. (1980b). A comparison of sonar and laser profiles along corresponding tracks in the Arctic Ocean. In R. S. Pritchard (Ed.), Sea ice processes and models (pp. 283–299). Seattle: University of Washington Press.

    Google Scholar 

  • Wadhams, P. (2016). A farewell to ice. London: Penguin Books, 273p.

    Google Scholar 

  • Wadhams, P., & Davy, T. (1986). On the spacing and draft distributions for pressure ridge keels. Journal of Geophysical Research, 91, 10,697–10,708.

    Article  Google Scholar 

  • Wadhams, P., Lange, M. A., & Ackley, S. F. (1987). The ice thickness distribution across the Atlantic sector of the Antarctic Ocean in midwinter. Journal of Geophysical Research, 92(C13), 14,535–14,552.

    Article  Google Scholar 

  • Wang, M., & Overland, J. E. (2012). A sea ice free summer Arctic within 30 years – an update from CMIP5 models. Geophysical Research Letters, 39, L18501. https://doi.org/10.1029/2012GL052868.

    Article  Google Scholar 

  • Wang, K., Leppäranta, M., & Kouts, T. (2003). A model for sea ice dynamics in the Gulf of Riga. Proceedings of the Estonian Academy of Sciences and Engineering, 9(2), 107–125.

    Google Scholar 

  • Wang, Q., Ilicak, M., Gerdes, R., Drange, H., Aksenov, Y., Bailey, D. A., Bentsen, M., Biastoch, A., Bozec, A., Böning, C., Cassou, C., Chassignet, E., Coward, A., Curry, B., Danabasoglu, G., Danilov, S., Fernandez, E., Fogli, P. G., Fujii, Y., Griffies, S. M., Iovino, D., Jahn, A., Jung, T., Large, W. G., Lee, C., Lique, C., Lu, J., Masina, S., Nurser, A. J. G., Rabe, B., Roth, C., Salas y Mélia, D., Samuels, B. L., Spence, P., Tsujino, H., Valcke, S., Voldoire, A., Wan, X., & Yeager, S. G. (2016a). An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: Sea ice and solid freshwater. Ocean Modelling, 99, 110–132. https://doi.org/10.1016/j.ocemod.2015.12.008.

    Article  Google Scholar 

  • Wang, Q., Ilicak, M., Gerdes, R., Drange, H., Aksenov, Y., Bailey, D. A., Bentsen, M., Biastoch, A., Bozec, A., Böning, C., Cassou, C., Chassignet, E., Coward, A., Curry, B., Danabasoglu, G., Danilov, S., Fernandez, E., Fogli, P. G., Fujii, Y., Griffies, S. M., Iovino, D., Jahn, A., Jung, T., Large, W. G., Lee, C., Lique, C., Lu, J., Masina, S., Nurser, A. J. G., Rabe, B., Roth, C., Salas y Mélia, D., Samuels, B. L., Spence, P., Tsujino, H., Valcke, S., Voldoire, A., Wan, X., & Yeager, S. G. (2016b). An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: Liquid freshwater. Ocean Model, 99, 86–109. https://doi.org/10.1016/j.ocemod.2015.12.009.

    Article  Google Scholar 

  • Weeks, W. F. (1980). Overview. Cold Regions Science and Technology, 2, 1–35.

    Article  Google Scholar 

  • Weiss, J. (2013). Drift, deformation, and fracture of sea ice. A perspective across scales (Springer briefs in earth sciences). Dordrecht: Springer.

    Book  Google Scholar 

  • Weiss, J., & Dansereau, V. (2016). Linking scales in sea ice mechanics. Philosophical Transactions of the Royal Society A, 375 (2086). https://doi.org/10.1098/rsta.2015.0352.

    Article  Google Scholar 

  • Winton, M. (2000). A reformulated three-layer sea ice model. Journal of Atmospheric and Oceanic Technology, 17, 525–531. https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.

    Article  Google Scholar 

  • Winton, M. (2006). Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophysical Research Letters, 33, L037.

    Google Scholar 

  • Winton, M. (2011). Do climate models underestimate the sensitivity of northern hemisphere sea ice cover? Journal of Climate, 24(15), 3924–3934.

    Article  Google Scholar 

  • WMO. (1970–2017). The WMO sea-ice nomenclature. WMO No. 259. Geneva.

    Google Scholar 

  • Wright, B., Hnatiuk, J., Kovacs, A. (1978) Sea ice pressure ridges in the Beaufort Sea. In: Proc. IAHR Symp. Ice Problems. Luleå, Sweden.

    Google Scholar 

  • Yang, Y., Leppäranta, M., Li, Z., Cheng, B., Mengxi, Z., & Demchev, D. (2015). Model simulations of the annual cycle of the landfast ice thickness in the East Siberian Sea. Advances in Polar Science, 26(2), 168–178.

    Google Scholar 

  • Zalesak, S. T. (1979). Fully multidimensional flux corrected transport algorithms for fluids. Journal of Computational Physics, 31, 335–362.

    Article  Google Scholar 

  • Zhang, X. (2010). Sensitivity of arctic summer sea ice coverage to global warming forcing: Towards reducing uncertainty in arctic climate change projections. Tellus A, 62, 220–227. https://doi.org/10.1111/j.1600-0870.2010.00441.

    Article  Google Scholar 

  • Zhang, J., & Rothrock, D. (2001). A thickness and enthalpy distribution sea-ice model. Journal of Physical Oceanography, 31(1), 2986–3001. https://doi.org/10.1175/1520-0485(2001)031<2986:ATAEDS>2.0.CO;2.

    Article  Google Scholar 

  • Zhang, J., & Rothrock, D. A. (2003). Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Monthly Weather Review, 131(5), 845–861. https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.

    Article  Google Scholar 

  • Zhang, Z., Vihma, T., Stössel, A., & Uotila, P. (2015). The role of wind forcing from operational analyses for the model representation of Antarctic coastal sea ice. Ocean Modelling, 94, 95–111. https://doi.org/10.1016/j.ocemod.2015.07.019.

    Article  Google Scholar 

  • Zubov, N. N. (1945). L’dy Arktiki [Arctic Ice]. Izdatel’stvo Glavsermorputi, Moscow. English translation 1963 by U.S. Naval Oceanogr. Office and Amer. Meteorol. Soc., San Diego.

    Google Scholar 

  • Zunz, V., Goosse, H., & Massonnet, F. (2013). How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? The Cryosphere, 7, 451–468.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Leppäranta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leppäranta, M., Meleshko, V.P., Uotila, P., Pavlova, T. (2020). Sea Ice Modelling. In: Johannessen, O., Bobylev, L., Shalina, E., Sandven, S. (eds) Sea Ice in the Arctic. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-21301-5_8

Download citation

Publish with us

Policies and ethics