Advertisement

From Process Models to Chatbots

  • Anselmo López
  • Josep Sànchez-Ferreres
  • Josep CarmonaEmail author
  • Lluís Padró
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11483)

Abstract

The effect of digital transformation in organizations needs to go beyond automation, so that human capabilities are also augmented. A possibility in this direction is to make formal representations of processes more accessible for the actors involved. On this line, this paper presents a methodology to transform a formal process description into a conversational agent, which can guide a process actor through the required steps in a user-friendly conversation. The presented system relies on dialog systems and natural language processing and generation techniques, to automatically build a chatbot from a process model. A prototype tool – accessible online – has been developed to transform a process model in BPMN into a chatbot, defined in Artificial Intelligence Marking Language (AIML), which has been evaluated over academic and industrial professionals, showing potential into improving the gap between process understanding and execution.

Notes

Acknowledgments

We would like to thank Gero Decker for drawing our attention to the problem considered in this paper. This work has been supported by MINECO and FEDER funds under grant TIN2017-86727-C2-1-R.

References

  1. 1.
    Chen, H., Liu, X., Yin, D., Tang, J.: A survey on dialogue systems: recent advances and new frontiers. SIGKDD Explor. Newsl. 19(2), 25–35 (2017)CrossRefGoogle Scholar
  2. 2.
    Delicado, L., Sànchez-Ferreres, J., Carmona, J., Padró, L.: NLP4BPM - natural language processing tools for business process management. In: Proceedings of the BPM Demo Track Co-located with 15th International Conference on Business Process Modeling (BPM 2017), Barcelona, Spain, September (2017)Google Scholar
  3. 3.
    Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management, 2nd edn. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-662-56509-4CrossRefGoogle Scholar
  4. 4.
    Gatt, A., Reiter, E.: SimpleNLG: a realisation engine for practical applications (2009)Google Scholar
  5. 5.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd edn. Prentice-Hall Inc., Upper Saddle River (2009)Google Scholar
  6. 6.
    Leopold, H., Mendling, J., Polyvyanyy, A.: Supporting process model validation through natural language generation. IEEE Trans. Softw. Eng. 40(8), 818–840 (2014)CrossRefGoogle Scholar
  7. 7.
    Matt, C., Hess, T., Benlian, A.: Digital transformation strategies. Bus. Inf. Syst. Eng. 57(5), 339–343 (2015)CrossRefGoogle Scholar
  8. 8.
    Mendling, J., Baesens, B., Bernstein, A., Fellmann, M.: Challenges of smart business process management: an introduction to the special issue. Decis. Support Syst. 100, 1–5 (2017)CrossRefGoogle Scholar
  9. 9.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  10. 10.
    Padro, L., Stanilovsky, E.: FreeLing 3.0: towards wider multilinguality. In: International Conference on Language Resources and Evaluation, pp. 2473–2479, May 2012Google Scholar
  11. 11.
    Pittke, F., Leopold, H., Mendling, J.: Automatic detection and resolution of lexical ambiguity in process models. In: Software Engineering 2016, Fachtagung des GI-Fachbereichs Softwaretechnik, Wien, Österreich, 23–26 Februar 2016, pp. 75–76 (2016)Google Scholar
  12. 12.
    Polyvyanyy, A., García-Bañuelos, L., Fahland, D., Weske, M.: Maximal structuring of acyclic process models. Comput. J. 57(1), 12–35 (2014)CrossRefGoogle Scholar
  13. 13.
    Polyvyanyy, A., Smirnov, S., Weske, M.: The triconnected abstraction of process models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 229–244. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03848-8_16CrossRefGoogle Scholar
  14. 14.
    Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge University Press, New York (2000)CrossRefGoogle Scholar
  15. 15.
    Thorne, C.: Chatbots for troubleshooting: a survey. Lang. Linguist. Compass 11(10), e12253 (2017)CrossRefGoogle Scholar
  16. 16.
    Traum, D.R., et al.: Representations of dialogue state for domain and task independent meta-dialogue. Electron. Trans. Artif. Intell. 3(D), 125–152 (1999)Google Scholar
  17. 17.
    Wallace, R.: The Elements of AIML Style. ALICE AI Foundation (2003)Google Scholar
  18. 18.
    Wallace, R.S.: The anatomy of A.L.I.C.E. In: Epstein, R., Roberts, G., Beber, G. (eds.) Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer, pp. 181–210. Springer, Netherlands (2009).  https://doi.org/10.1007/978-1-4020-6710-5_13CrossRefGoogle Scholar
  19. 19.
    Weizenbaum, J.: ELIZA - a computer program for the study of natural language communication between man and machine. Commun. ACM 9(1), 36–45 (1966)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anselmo López
    • 1
  • Josep Sànchez-Ferreres
    • 1
  • Josep Carmona
    • 1
    Email author
  • Lluís Padró
    • 1
  1. 1.Process and Data Science Group, Computer Science DepartmentUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations