Advertisement

Revealing the Conceptual Schemas of RDF Datasets

  • Subhi IssaEmail author
  • Pierre-Henri Paris
  • Fayçal Hamdi
  • Samira Si-Said Cherfi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11483)

Abstract

RDF-based datasets, thanks to their semantic richness, variety and fine granularity, are increasingly used by both researchers and business communities. However, these datasets suffer a lack of completeness as the content evolves continuously and data contributors are loosely constrained by the vocabularies and schemes related to the data sources. Conceptual schemas have long been recognized as a key mechanism for understanding and dealing with complex real-world systems. In the context of the Web of Data and user-generated content, the conceptual schema is implicit. In fact, each data contributor has an implicit personal model that is not known by the other contributors. Consequently, revealing a meaningful conceptual schema is a challenging task that should take into account the data and the intended usage. In this paper, we propose a completeness-based approach for revealing conceptual schemas of RDF data. We combine quality evaluation and data mining approaches to find a conceptual schema for a dataset, this model meets user expectations regarding data completeness constraints. To achieve that, we propose LOD-CM; a web-based completeness demonstrator for linked datasets.

Keywords

Conceptual modeling Completeness Model quality Conceptual schema mining Schema mining 

References

  1. 1.
    Batini, C., Scannapieco, M.: Erratum to: data and information quality: dimensions, principles and techniques. In: Batini, C., Scannapieco, M. (eds.) Data and Information Quality. DSA, pp. E1–E1. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-24106-7_15CrossRefGoogle Scholar
  2. 2.
    Christodoulou, K., Paton, N.W., Fernandes, A.A.A.: Structure inference for linked data sources using clustering. In: Hameurlain, A., Küng, J., Wagner, R., Bianchini, D., De Antonellis, V., De Virgilio, R. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XIX. LNCS, vol. 8990, pp. 1–25. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46562-2_1CrossRefGoogle Scholar
  3. 3.
    Embley, D.W., Liddle, S.W.: Big data—conceptual modeling to the rescue. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 1–8. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41924-9_1CrossRefGoogle Scholar
  4. 4.
    Gouda, K., Zaki, M.J.: Efficiently mining maximal frequent itemsets. In: Proceedings of the 2001 IEEE International Conference on Data Mining, ICDM 2001, pp. 163–170. IEEE Computer Society, Washington, DC (2001)Google Scholar
  5. 5.
    Grahne, G., Zhu, J.: Efficiently using prefix-trees in mining frequent itemsets. In: Goethals, B., Zaki, M.J. (eds.) FIMI 2003, Frequent Itemset Mining Implementations, Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementations, 19 December 2003, Melbourne, Florida, USA, CEUR Workshop Proceedings, vol. 90. CEUR-WS.org (2003)Google Scholar
  6. 6.
    Hamdi, F., Cherfi, S.S.S.: An approach for measuring rdf data completeness. BDA 2015 Gestion de Données-Principes, Technologies et Applications 29 septembre au 2 octobre 2015 \(\hat{}\)Ile de Porquerolles p. 32 (2015)Google Scholar
  7. 7.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Chen, W., Naughton, J.F., Bernstein, P.A. (eds.) Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 16–18 May 2000, Dallas, Texas, USA, pp. 1–12. ACM (2000)Google Scholar
  8. 8.
    Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Issa, S., Paris, P.-H., Hamdi, F.: Assessing the completeness evolution of DBpedia: a case study. In: de Cesare, S., Frank, U. (eds.) ER 2017. LNCS, vol. 10651, pp. 238–247. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70625-2_22CrossRefGoogle Scholar
  10. 10.
    Jain, P., Hitzler, P., Yeh, P.Z., Verma, K., Sheth, A.P.: Linked data is merely more data. In: Linked Data Meets Artificial Intelligence, Papers from the 2010 AAAI Spring Symposium, Technical Report SS-10-07, Stanford, California, USA, 22–24 March 2010 (2010). http://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view/1130
  11. 11.
    Bayardo Jr., R.J: Efficiently mining long patterns from databases. In: Haas, L.M., Tiwary, A. (eds.) SIGMOD 1998, Proceedings ACM SIGMOD International Conference on Management of Data, 2–4 June 1998, Seattle, Washington, USA, pp. 85–93. ACM Press (1998)Google Scholar
  12. 12.
    Kellou-Menouer, K., Kedad, Z.: Schema discovery in RDF data sources. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 481–495. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25264-3_36CrossRefGoogle Scholar
  13. 13.
    Klyne, G., Carroll, J.J.: Resource description framework (RDF): Concepts and abstract syntax (2006)Google Scholar
  14. 14.
    Levandoski, J.J., Mokbel, M.F.: RDF data-centric storage. In: IEEE International Conference on Web Services, ICWS 2009, pp. 911–918. IEEE (2009)Google Scholar
  15. 15.
    Lukyanenko, R., Parsons, J.: Principles for modeling user-generated content. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 432–440. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25264-3_32CrossRefGoogle Scholar
  16. 16.
    Lukyanenko, R., Parsons, J., Samuel, B.M.: Representing instances: the case for reengineering conceptual modelling grammars. Eur. J. Inf. Syst. 28(1), 68–90 (2019)CrossRefGoogle Scholar
  17. 17.
    Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-39390-0CrossRefzbMATHGoogle Scholar
  18. 18.
    Pham, M., Passing, L., Erling, O., Boncz, P.A.: Deriving an emergent relational schema from RDF data. In: Gangemi, A., Leonardi, S., Panconesi, A. (eds.) Proceedings of the 24th International Conference on World Wide Web, WWW 2015, Florence, Italy, 18–22 May 2015, pp. 864–874. ACM (2015). http://doi.acm.org/10.1145/2736277.2741121
  19. 19.
    Rolland, C., Prakash, N.: From conceptual modelling to requirements engineering. Ann. Softw. Eng. 10(1–4), 151–176 (2000)CrossRefGoogle Scholar
  20. 20.
    Töpper, G., Knuth, M., Sack, H.: Dbpedia ontology enrichment for inconsistency detection. In: Proceedings of the 8th International Conference on Semantic Systems, pp. 33–40. ACM (2012)Google Scholar
  21. 21.
    Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., et al. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21034-1_9CrossRefGoogle Scholar
  22. 22.
    Wang, Y., Du, X., Lu, J., Wang, X.: FlexTable: using a dynamic relation model to store RDF data. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 580–594. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12026-8_44CrossRefGoogle Scholar
  23. 23.
    Zaveri, A., et al.: Quality assessment methodologies for linked open data. Semant. Web J. (2013, submitted)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Subhi Issa
    • 1
    Email author
  • Pierre-Henri Paris
    • 1
  • Fayçal Hamdi
    • 1
  • Samira Si-Said Cherfi
    • 1
  1. 1.CEDRIC - Conservatoire National des Arts et MétiersParisFrance

Personalised recommendations