Advertisement

Direct and Reverse Rewriting in Data Interoperability

  • Maurizio LenzeriniEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11483)

Abstract

Data interoperability refers to the issue of accessing and processing data from multiple sources in order to create more holistic and contextual information for improving data analysis, for better decision-making, and for accountability purposes. In the era towards a data-driven society, the notion of data interoperability is of paramount importance. Looking at the research work in the last decades, several types of data interoperability scenarios emerged, including the following.

Notes

Acknowledgement

The author would like to thank Gianluca Cima and Antonella Poggi for several discussions on the notion of reverse rewriting. This work has been partially supported by MIUR under the PRIN project “HOPE: High-quality Open data Publishing and Enrichment”.

References

  1. 1.
    Abedjan, Z., Golab, L., Naumann, F.: Data profiling: a tutorial. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 1747–1751 (2017)Google Scholar
  2. 2.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ. Co., Boston (1995)zbMATHGoogle Scholar
  3. 3.
    Arenas, M., Barceló, P., Libkin, L., Murlak, F.: Foundations of Data Exchange. Cambridge University Press, Cambridge (2014)zbMATHGoogle Scholar
  4. 4.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  5. 5.
    Calvanese, D., Damaggio, E., De Giacomo, G., Lenzerini, M., Rosati, R.: Semantic data integration in P2P systems. In: Proceedings of the International Workshop on Databases, Information Systems and Peer-to-Peer Computing (DBISP2P 2003) (2003)Google Scholar
  6. 6.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reason. 39(3), 385–429 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. Artif. Intell. 195, 335–360 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cima, G.: Preliminary results on ontology-based open data publishing. In: Proceedings of the 30th International Workshop on Description Logic (DL), vol. 1879. CEUR Electronic Workshop Proceedings (2017). http://ceur-ws.org/
  9. 9.
    Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C Recommendation, World Wide Web Consortium, September 2012. http://www.w3.org/TR/r2rml/
  10. 10.
    De Giacomo, G., Lembo, M., Lenzerini, A., Rosati, R.: Using ontologies for semantic data integration. In: Flesca, S., Greco, S., Masciari, E., Saccà, D. (eds.) A Comprehensive Guide Through the Italian Database Research Over the Last 25 Years. Studies in Big Data, vol. 31, pp. 187–202. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-61893-7_11CrossRefGoogle Scholar
  11. 11.
    De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On the update of description logic ontologies at the instance level. In: Proceedings of the 21st National Conference on Artificial Intelligence (AAAI), pp. 1271–1276 (2006)Google Scholar
  12. 12.
    Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kaufmann, Burlington (2012)Google Scholar
  13. 13.
    Greco, S., Molinaro, C., Spezzano, F.: Incomplete Data and Data Dependencies in Relational Databases. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, Burlington (2012)CrossRefGoogle Scholar
  14. 14.
    Gutiérrez-Basulto, V., Ibáñez-García, Y.A., Kontchakov, R., Kostylev, E.V.: Queries with negation and inequalities over lightweight ontologies. J. Web Semant. 35, 184–202 (2015)CrossRefGoogle Scholar
  15. 15.
    Kolaitis, P.G.: Schema mappings, data exchange, and metadata management. In: Proceedings of the 24th ACM SIGACT SIGMOD SIGART Symposium on Principles of Database Systems (PODS), pp. 61–75 (2005)Google Scholar
  16. 16.
    Kolaitis, P.G.: Reflections on schema mappings, data exchange, and metadata management. In: Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Houston, TX, USA, 10–15 June 2018, pp. 107–109 (2018)Google Scholar
  17. 17.
    Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the 21st ACM SIGACT SIGMOD SIGART Symposium on Principles of Database Systems (PODS), pp. 233–246 (2002)Google Scholar
  18. 18.
    Lenzerini, M.: Managing data through the lens of an ontology. AI Mag. 39(2), 65–74 (2018)CrossRefGoogle Scholar
  19. 19.
    Lutz, C., Marti, J., Sabellek, L.: Query expressibility and verification in ontology-based data access. In: Proceedings of the 16th International Conference on the Principles of Knowledge Representation and Reasoning (KR), pp. 389–398 (2018)Google Scholar
  20. 20.
    Motik, B., Fokoue, A., Horrocks, I., Wu, Z., Lutz, C., Grau, B.C.: OWL web ontology language profiles. W3C Recommendation, World Wide Web Consortium, October 2009. http://www.w3.org/TR/owl-profiles/
  21. 21.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Semant. X, 133–173 (2008)zbMATHGoogle Scholar
  22. 22.
    Roth, A., Skritek, S.: Peer data management. In: Data Exchange, Integration, and Streams. Dagstuhl Follow-Ups, vol. 5, pp. 185–215. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Informatica, Automatica e Gestionale “Antonio Ruberti”Sapienza Università di RomaRomeItaly

Personalised recommendations