Skip to main content

Genomic Applications and Resources to Dissect Flowering Time Control in Narrow-Leafed Lupin

  • Chapter
  • First Online:

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Flowering time is a highly influential phenological trait for crop adaptation, and in the case of narrow-leafed lupin (Lupinus angustifolius L.), has been one of the most economically significant traits for crop production in both Australia and Europe. Given the importance of this trait, understanding the genetic basis of flowering time has become an important goal for pre-breeding. In this chapter, we report the current achievements made to dissect the control of flowering in narrow-leafed lupin using a variety of genetic and genomic approaches, and discuss how new and emerging resources will continue to shape our understanding of these complex genetic regulatory networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe M et al (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052

    Article  CAS  PubMed  Google Scholar 

  • Adamczyk BJ, Lehti-Shiu MD, Fernandez DE (2007) The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J 50:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Adrian J, Torti S, Turck F (2009) From decision to commitment: the molecular memory of flowering. Mol Plant 2:628–642

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998) Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Nature 392:720

    Article  CAS  PubMed  Google Scholar 

  • Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627

    Article  PubMed  CAS  Google Scholar 

  • Azani N et al (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66:44–77

    Article  Google Scholar 

  • Berger J, Shrestha D, Ludwig C (2017) Reproductive strategies in Mediterranean legumes: trade-offs between phenology, seed size and vigor within and between wild and domesticated Lupinus species collected along aridity gradients. Front Plant Sci 8:548

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger JD, Clements JC, Nelson MN, Kamphuis LG, Singh KB, Buirchell B (2013) The essential role of genetic resources in narrow-leafed lupin improvement. Crop Pasture Sci 64:361–373

    Article  CAS  Google Scholar 

  • Berry S, Dean C (2015) Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant J 83:133–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertioli DJ et al (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438

    Article  CAS  PubMed  Google Scholar 

  • Blümel M, Dally N, Jund C (2015) Flowering time regulation in crops—what did we learn from Arabidopsis? Curr Opin Biotech 32:121–129

    Article  PubMed  CAS  Google Scholar 

  • Boersma JG, Li C, Leśniewska K, Sivasithamparam K, Yang H (2008) Identification of quantitative trait loci (QTLs) influencing early vigour, height, flowering date, and seed size and their implications for breeding of narrow-leafed lupin (Lupinus angustifolius L.). Aust J Agric Res 59:527–535

    Article  CAS  Google Scholar 

  • Boersma JG, Pallotta M, Li C, Buirchell BJ, Sivasithamparam K, Yang H (2005) Construction of a genetic linkage map using MFLP and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus angustifolius L.). Cell Mol Biol Lett 10:331–344

    CAS  PubMed  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    CAS  PubMed  Google Scholar 

  • Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 12:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Brien SJ, Cowling WA, Potter RH, O'Brien PA, Jones RACJ, Jones MGK (1999) A molecular marker for early maturity (Ku) and marker-assisted breeding of Lupinus angustifolius. In: van Santen E, Wink M, Weissmann S, Römer P (eds) Lupin, an ancient crop for the new millennium: proceedings of the 9th international lupin conference, Klink/Muritz, Germany, 20–24 June 1999, pp 115–117

    Google Scholar 

  • Briggs WR et al (2001) The phototropin family of photoreceptors. Plant Cell 13:993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y et al (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J 16:176–185

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB et al (2015) Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol Biol Evol 32:193–210

    Article  CAS  PubMed  Google Scholar 

  • Cardoso D, Pennington RT, de Queiroz LP, Boatwright JS, Van Wyk BE, Wojciechowski MF, Lavin M (2013) Reconstructing the deep-branching relationships of the papilionoid legumes. S Afr J Bot 89:58–75

    Article  CAS  Google Scholar 

  • Chardon F, Damerval C (2005) Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol 61:579–590

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Dubcovsky J (2012) Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet 8:e1003134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Berger J, Fletcher A, Lawes R, Robertson M (2016a) Genotype × environment interactions for phenological adaptation in narrow-leafed lupin: a simulation study with a parameter optimized model. Field Crops Res 197:28–38

    Article  Google Scholar 

  • Chen Y, Shan F, Nelson MN, Siddique KH, Rengel Z (2016b) Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of Lupinus angustifolius. J Exp Bot 67:3683–3697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Fletcher A, Lawes R, Berger J, Robertson M (2017) Modelling phenological and agronomic adaptation options for narrow-leafed lupins in the southern grainbelt of Western Australia. Eur J Agron 89:140–147

    Article  CAS  Google Scholar 

  • Chen L, Wang S-Q, Hu Y-G (2011) Detection of SNPs in the VRN-A1 gene of common wheat (Triticum aestivum L.) by a modified Ecotilling method using agarose gel electrophoresis. Aust J Crop Sci 5:321–329

    Google Scholar 

  • Christie JM et al (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements J, Cowling W (1994) Patterns of morphological diversity in relation to geographical origins of wild Lupinus angustifolius from the Aegean region. Genet Resour Crop Ev 41:109–122

    Article  Google Scholar 

  • Colbert T et al (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572

    Article  CAS  PubMed  Google Scholar 

  • Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 1231143

    Google Scholar 

  • Cowling WA (1999) Pedigrees and characteristics of narrow-leafed lupin cultivars released in Australia from 1967–1998. Agric W Aust Bull 4365:1–11

    Google Scholar 

  • Croser JS et al (2016) Time to flowering of temperate pulses in vivo and generation turnover in vivo-in vitro of narrow-leafed lupin accelerated by low red to far-red ratio and high intensity in the far-red region. Plant Cell Tissue Organ 127:591–599

    Article  CAS  Google Scholar 

  • De Bodt S, Raes J, Van de Peer Y, Theißen G (2003) And then there were many: MADS goes genomic. Trends Plant Sci 8:475–483

    Article  PubMed  CAS  Google Scholar 

  • Du A et al (2017) The DTH8-Hd1 module mediates day-length-dependent regulation of rice flowering. Mol Plant 10:948–961

    Article  CAS  PubMed  Google Scholar 

  • Fankhauser C (2001) The phytochromes, a family of red/far-red absorbing photoreceptors. J Biol Chem 276:11453–11456

    Article  CAS  PubMed  Google Scholar 

  • Frerichmann SLM, Kirchhoff M, Müller AE, Scheidig AJ, Jung C, Kopisch-Obuch FJ (2013) EcoTILLING in Beta vulgaris reveals polymorphisms in the FLC-like gene BvFL1 that are associated with annuality and winter hardiness. BMC Plant Biol 13:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L-L, Hane JK, Kamphuis LG, Foley R, Shi B-J, Atkins CA, Singh KB (2011) Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome library and BAC-end sequencing. BMC Genomics 12:521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109:E2579–E2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gendall AR, Levy YY, Wilson A, Dean C (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525–535

    Article  CAS  PubMed  Google Scholar 

  • Gladstones JS, Crosbie GB (1979) Lupin wild types introduced into Western Australia to 1973. Department of Agriculture, Western Australia, Technical Bulletin No. 43

    Google Scholar 

  • Gregis V et al (2013) Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol 14:R56–R56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509

    Article  CAS  PubMed  Google Scholar 

  • Hanano S, Goto K (2011) Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 23:3172–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hane JK et al (2017) A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution. Plant Biotechnol J 15:318–330

    Article  CAS  PubMed  Google Scholar 

  • Hayama R, Sarid-Krebs L, Richter R, Fernández V, Jang S, Coupland G (2017) PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length. EMBO J 36:904–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht V et al (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol 137:1420–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht V et al (2011) The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell 23:147–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedman H, Källman T, Lagercrantz U (2009) Early evolution of the MFT-like gene family in plants. Plant Mol Biol 70:359–369

    Article  CAS  PubMed  Google Scholar 

  • Helliwell CA, Wood CC, Robertson M, Peacock WJ, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46:183–192

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    Article  CAS  PubMed  Google Scholar 

  • Hurgobin B, Edwards D (2017) SNP discovery using a pangenome: has the single reference approach become obsolete? Biology 6:21

    Article  PubMed Central  Google Scholar 

  • Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426:302–306

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  CAS  PubMed  Google Scholar 

  • Jaudal M, Yeoh CC, Zhang L, Stockum C, Mysore KS, Ratet P, Putterill J (2013) Retroelement insertions at the Medicago FTa1 locus in spring mutants eliminate vernalisation but not long-day requirements for early flowering. Plant J 76:580–591

    Article  CAS  PubMed  Google Scholar 

  • Jaudal M et al (2016) MtVRN2 is a polycomb VRN2-like gene which represses the transition to flowering in the model legume Medicago truncatula. Plant J 86:145–160

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung C-H, Wong CE, Singh MB, Bhalla PL (2012) Comparative genomic analysis of soybean flowering genes. PLoS ONE 7:e38250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573

    Article  CAS  PubMed  Google Scholar 

  • Kamphuis LG, Hane JK, Nelson MN, Gao L, Atkins CA, Singh KB (2015) Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers. Plant Biotechnol J 13:14–25

    Article  CAS  PubMed  Google Scholar 

  • Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, Lagercrantz U (2011) Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol 156:1967–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasprzak A, Šafář J, Janda J, Doležel J, Wolko B, Naganowska B (2006) The bacterial artificial chromosome (BAC) library of the narrow-leafed lupin (Lupinus angustifolius L.). Cell Mol Biol Lett 11:396–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299

    Article  CAS  PubMed  Google Scholar 

  • Kim W-Y et al (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356

    Article  CAS  PubMed  Google Scholar 

  • Klintenäs M, Pin PA, Benlloch R, Ingvarsson PK, Nilsson O (2012) Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage. New Phytol 196:1260–1273

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960

    Article  CAS  PubMed  Google Scholar 

  • Kong F et al (2010) Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154:1220–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroc M, Koczyk G, Święcicki W, Kilian A, Nelson MN (2014) New evidence of ancestral polyploidy in the Genistoid legume Lupinus angustifolius L. (narrow-leafed lupin). Theor Appl Genet 127:1237–1249

    Article  PubMed  Google Scholar 

  • Książkiewicz M et al (2017) A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci Rep 7:15335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Książkiewicz M, Rychel S, Nelson M, Wyrwa K, Naganowska B, Wolko B (2016) Expansion of the phosphatidylethanolamine binding protein family in legumes: a case study of Lupinus angustifolius L. FLOWERING LOCUS T homologs, LanFTc1 and LanFTc2. BMC Genomics 17:820

    Google Scholar 

  • Laurie RE et al (2011) The Medicago FLOWERING LOCUS T homolog, MtFTa1, is a key regulator of flowering time. Plant Physiol 156:2207–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 54:575–594

    Article  PubMed  Google Scholar 

  • Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C (2002) Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297:243–246

    Article  CAS  PubMed  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180:995–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikołajczyk J (1966) Genetic studies in Lupinus angustifolius. Part. III. Inheritance of the alkaloid content, seed hardness and length of the growing season in blue lupin. Genet Pol 7:181–196

    Google Scholar 

  • Mizoguchi T et al (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon J et al (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    Article  CAS  PubMed  Google Scholar 

  • Mousavi-Derazmahalleh M et al (2018a) Exploring the genetic and adaptive diversity of a pan-Mediterranean crop wild relative: narrow-leafed lupin. Theor Appl Genet 131:887–901

    Article  PubMed  PubMed Central  Google Scholar 

  • Mousavi-Derazmahalleh M et al (2018b) The western Mediterranean region provided the founder population of domesticated narrow-leafed lupin. Theor Appl Genet 131:2543–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson MN et al (2017) The loss of vernalization requirement essential to domestication in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of an FT homologue. New Phytol 213:220–232

    Article  CAS  PubMed  Google Scholar 

  • Nelson MN et al (2010) Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus. DNA Res 17:73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson MN et al (2006) The first gene-based map of Lupinus angustifolius L.-location of domestication genes and conserved synteny with Medicago truncatula. Theor Appl Genet 113:225–238

    Article  CAS  PubMed  Google Scholar 

  • Nusinow DA et al (2011) The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogiso-Tanaka E et al (2013) Natural variation of the RICE FLOWERING LOCUS T 1 contributes to flowering time divergence in rice. PLoS ONE 8:e75959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400

    Article  CAS  PubMed  Google Scholar 

  • Rahman MS, Gladstones JS (1972) Control of lupin initiation by vernalization, photoperiod and temperature under controlled envrionment. Aust J Exp Agric Anim Husb 12:638–645

    Article  Google Scholar 

  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ream TS, Woods DP, Amasino RM (2012) The molecular basis of vernalization in different plant groups. Cold Spring Harbor Symp Quant Biol 77:105–115

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Medina C, Atkins C, Mann A, Jordan M, Smith P (2011) Macromolecular composition of phloem exudate from white lupin (Lupinus albus L.). BMC Plant Biol 11:36

    Google Scholar 

  • Sawa M, Kay SA (2011) GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc Natl Acad Sci USA 108:11698–11703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena RK, Edwards D, Varshney RK (2014) Structural variations in plant genomes. Brief Funct Genomics 13:296–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaeffer SM, Nakata PA (2015) CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Sci 240:130–142

    Article  CAS  PubMed  Google Scholar 

  • Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2017) Towards CRISPR/Cas crops—bringing together genomics and genome editing. New Phytol 216:682–698

    Article  CAS  PubMed  Google Scholar 

  • Scheben A, Yuan Y, Edwards D (2016) Advances in genomics for adapting crops to climate change. Current Plant Biol 6:2–10

    Article  Google Scholar 

  • Schmutz J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schönrock N, Bouveret R, Leroy O, Borghi L, Köhler C, Gruissem W, Hennig L (2006) Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. Genes Dev 20:1667–1678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz C et al (2009) Cis-regulatory changes at FLOWERING LOCUS T mediate natural variation in flowering responses of Arabidopsis thaliana. Genetics 183:723–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Searle I, Coupland G (2004) Induction of flowering by seasonal changes in photoperiod. EMBO J 23:1217–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shore P, Sharrocks D (1995) The MADS-box family of transcription factors. Eur J Biochem 229:1–13

    Article  CAS  PubMed  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18:575–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soyk S et al (2017) Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet 49:162–168

    Article  CAS  PubMed  Google Scholar 

  • Sun N, Zhao H (2013) Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol Bioeng 110:1811–1821

    Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 8:159–164

    Article  CAS  Google Scholar 

  • Sussmilch FC, Berbel A, Hecht V, Vander Schoor JK, Ferrándiz C, Madueño F, Weller JL (2015) Pea VEGETATIVE2 is an FD homolog that is essential for flowering and compound inflorescence development. Plant Cell 27:1046–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X et al (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018

    Article  CAS  PubMed  Google Scholar 

  • Tao Z, Shen L, Liu C, Liu L, Yan Y, Yu H (2012) Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. Plant J 70:549–561

    Article  CAS  PubMed  Google Scholar 

  • Tapia-López R et al (2008) An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol 146:1182–1192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor CM et al (2019) INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalisaiton response and flowering time in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ 42:174–187

    Article  CAS  PubMed  Google Scholar 

  • Theissen G et al (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    Article  CAS  PubMed  Google Scholar 

  • Till BJ, Zerr T, Comai L, Henikoff S (2006) A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc 1:2465–2477

    Article  CAS  PubMed  Google Scholar 

  • Torti S et al (2012) Analysis of the Arabidopsis shoot meristem transcriptome during floral initiation identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering. Plant Cell 24:444–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWEIRNG LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594

    Article  CAS  PubMed  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang S, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  • Wang Z et al (2015) Functional evolution of phosphatidylethanolamine binding proteins in soybean and Arabidopsis. Plant Cell 27:323–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller JL, Murfet IC, Reid JB (1997) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiol 114:1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller JL, Ortega R (2015) Genetic control of flowering time in legumes. Front Plant Sci 6:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Wickland DP, Hanzawa Y (2015) The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms. Mol Plant 8:983–997

    Article  CAS  PubMed  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am J Bot 91:1846–1862

    Article  CAS  PubMed  Google Scholar 

  • Wolko B, Clements JC, Naganowska B, Nelson MN, Yang H (2011) Lupinus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Heidelberg, pp 153–206

    Chapter  Google Scholar 

  • Wolter F, Puchta H (2017) Knocking out consumer concerns and regulator's rules: efficient use of CRISPR/Cas ribonucleoprotein complexes for genome editing in cereals. Genome Biol 18:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong ACS et al (2014) Isolation and functional analysis of CONSTANS-LIKE genes suggests that a central role for CONSTANS in flowering time control is not evolutionarily conserved in Medicago truncatula. Front Plant Sci 5:486

    Article  PubMed  PubMed Central  Google Scholar 

  • Woo JW et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Price BW, Haider W, Seufferheld G, Nelson R, Hanzawa Y (2014) Functional and evolutionary characterization of the CONSTANS gene family in short-day photoperiodic flowering in soybean. PLoS ONE 9:e85754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xue W et al (2018) Natural variation in Ghd7 is an important reuglator of heading data and yield potential in rice. Nat Genet 40:761–767

    Article  CAS  Google Scholar 

  • Yamashino T, Yamawaki S, Hagui E, Ueoka-Nakanishi H, Nakamichi N, Ito S, Mizuno T (2013) Clock-controlled and FLOWERING LOCUS T (FT)-dependent photoperiodic pathway in Lotus japonicus I: verification of the flowering-associated function of an FT homolog. Biosci Biotech Biochem 77:747–753

    Article  CAS  Google Scholar 

  • Yu L-H, Miao Z-Q, Qi G-F, Wu J, Cai X-T, Mao J-L, Xiang C-B (2014) MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Mol Plant 7:1653–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zetsche B et al (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 35:31–34

    Article  CAS  PubMed  Google Scholar 

  • Zhai H et al (2014) GmFT4, a homolog of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS ONE 9:e89030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Ransom C, Ludwig P, van Nocker S (2003) Genetic analysis of early flowering mutants in Arabidopsis defines a class of pleiotropic developmental regulator required for expression of the flowering-time switch Flowering Locus C. Genetics 164:347–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q et al (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50:278–284

    Article  CAS  PubMed  Google Scholar 

  • Zhou G et al (2018) Construction of an ultra-high density consensus genetic map, and enhancement of the physcial map from genome sequencing in Lupinus angustifolius. Theor Appl Genet 131:209–223

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew N. Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taylor, C.M., Kamphuis, L.G., Cowling, W.A., Berger, J.D., Nelson, M.N. (2020). Genomic Applications and Resources to Dissect Flowering Time Control in Narrow-Leafed Lupin. In: Singh, K., Kamphuis, L., Nelson, M. (eds) The Lupin Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-21270-4_9

Download citation

Publish with us

Policies and ethics