Skip to main content

How Have Narrow-Leafed Lupin Genomic Resources Enhanced Our Understanding of Lupin Domestication?

  • Chapter
  • First Online:

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Lupins provide an insightful model for plant domestication with five species domesticated over a wide range of time and geography. The most intensively studied species is narrow-leafed lupin, a twentieth-century domesticate where the addition of each successive domestication trait was documented in the scientific literature. Foundational to the advances made in our understanding of lupin domestication was the availability of excellent genetic resources: Well-annotated wild seed collections, published pedigrees of Australian narrow-leafed lupin cultivars and a suite of wild × domesticated cross populations. Rapid developments in genomic technologies culminating in the reference genome for narrow-leafed lupin have greatly increased our understanding of the origins of domesticated lupins, how diversity has been profoundly affected and the molecular control of domestication genes. This chapter provides an overview of our current understanding of lupin domestication and how this knowledge can equip lupin breeders to create more diverse and productive cultivars.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Annicchiarico P, Harzic N, Carroni AM (2010) Adaptation, diversity, and exploitation of global white lupin (Lupinus albus L.) landrace genetic resources. Field Crops Res 119:114–124

    Google Scholar 

  • Atnaf M, Tesfaye K, Dagne K, Wegari D (2015) Extent and pattern of genetic diversity in Ethiopian white lupin landraces for agronomical and phenological traits. Afr Crop Sci J 23:327–341

    Google Scholar 

  • Atnaf M, Yao N, Martina K, Dagne K, Wegary D, Tesfaye K (2017) Molecular genetic diversity and population structure of Ethiopian white lupin landraces: implications for breeding and conservation. PLoS ONE 12:e0188696

    PubMed  PubMed Central  Google Scholar 

  • Berger JD, Buirchell BJ, Luckett DJ, Nelson MN (2012) Domestication bottlenecks limit genetic diversity and constrain adaptation in narrow-leafed lupin (Lupinus angustifolius L.). Theor Appl Genet 124:637–652

    CAS  PubMed  Google Scholar 

  • Berger JD, Clements JC, Nelson MN, Kamphuis LG, Singh KB, Buirchell B (2013) The essential role of genetic resources in narrow-leafed lupin improvement. Crop Pasture Sci 64:361–373

    CAS  Google Scholar 

  • Berger JD, Shrestha D, Ludwig C (2017) Reproductive strategies in Mediterranean legumes: trade-offs between phenology, seed size and vigor within and between wild and domesticated Lupinus species collected along aridity gradients. Front Plant Sci 8:548

    PubMed  PubMed Central  Google Scholar 

  • Boersma JG, Pallotta M, Li C, Buirchell BJ, Sivasithamparam K, Yang H (2005) Construction of a genetic linkage map using MFLP and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus angustifolius L.). Cell Mol Biol Lett 10:331–344

    CAS  PubMed  Google Scholar 

  • Boersma J, Nelson M, Sivasithamparam K, Yang H (2009) Development of sequence-specific PCR markers linked to the Tardus gene that reduces pod shattering in narrow-leafed lupin (Lupinus angustifolius L.). Mol Breed 23:259–267

    CAS  Google Scholar 

  • Bunsupa S, Okada T, Saito K, Yamazaki M (2011) An acyltransferase-like gene obtained by differential gene expression profiles of quinolizidine alkaloid-producing and nonproducing cultivars of Lupinus angustifolius. Plant Biotechnol 28:89–94

    Google Scholar 

  • Bunsupa S, Katayama K, Ikeura E, Oikawa A, Toyooka K, Saito K, Yamazaki M (2012) Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in Leguminosae. Plant Cell 24:1202–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon SB, McKain MR, Harkess A, Nelson MN, Dash S, Deyholos MK, Peng Y, Joyce B, Stewart CN, Rolf M, Kutchan T, Tan X, Chen C, Zhang Y, Carpenter E, Wong GK-S, Doyle JJ, Leebens-Mack J (2015) Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol Biol Evol 32:193–210

    CAS  PubMed  Google Scholar 

  • Clements J, Sweetingham M, Smith L, Francis G, Thomas G, Sipsas S (2008) Crop improvement in Lupinus mutabilis for Australian agriculture-progress and prospects. Lupins for health and wealth. In: Proceedings of the 12th international lupin conference, Fremantle, Western Australia. International Lupin Association, pp 244–250, 14–18 Sept 2008

    Google Scholar 

  • Cowling WA, Huyghe C, Święcicki W (1998) Lupin breeding. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production, and utilization. CAB International, Wallingford, UK

    Google Scholar 

  • Cowling WA, Buirchell BJ, Falk DE (2009) A model for introducing novel genetic diversity from wild relatives into elite crop populations. Crop Pasture Sci 60:1009–1015

    CAS  Google Scholar 

  • Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707

    CAS  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    CAS  Google Scholar 

  • Eastwood RJ, Hughes CE (2008) Origins of domestication of Lupinus mutabilis in the Andes. Lupins for health and wealth. In: Proceedings of the 12th international lupin conference, pp 14–18

    Google Scholar 

  • FAO (2017) FAOSTAT: crop production data. Food and Agriculture Organisation of the United Nations. https://www.fao.org/faostat/en/#data/QC. Accessed Dec 2018

  • Foley RC, Gao LL, Spriggs A, Soo LY, Goggin DE, Smith PM, Atkins CA, Singh KB (2011) Identification and characterisation of seed storage protein transcripts from Lupinus angustifolius. BMC Plant Biol 11:59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foley RC, Jimenez-Lopez JC, Kamphuis LG, Hane JK, Melser S, Singh KB (2015) Analysis of conglutin seed storage proteins across lupin species using transcriptomic, protein and comparative genomic approaches. BMC Plant Biol 15:106

    PubMed  PubMed Central  Google Scholar 

  • Forbes I, Wells HD (1968) Hard and soft seededness in Blue Lupine, Lupinus angustifolius L.: inheritance and phenotype classification 1. Crop Sci 8:195–197

    Google Scholar 

  • French R, Sweetingham M, Shea G (2001) A comparison of the adaptation of yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) to acid sandplain soils in low rainfall agricultural areas of Western Australia. Aust J Agric Res 52:945–954

    Google Scholar 

  • Frick KM, Kamphuis LG, Siddique KH, Singh KB, Foley RC (2017) Quinolizidine alkaloid biosynthesis in lupins and prospects for grain quality improvement. Front Plant Sci 8:87

    PubMed  PubMed Central  Google Scholar 

  • Frick KM, Foley RC, Kamphuis LG, Siddique KHM, Garg G, Singh KB (2018) Characterisation of the genetic factors affecting quinolizidine alkaloid biosynthesis and its response to abiotic stress in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ 41:2155–2168

    CAS  PubMed  Google Scholar 

  • Frick KM, Foley R, Siddique KHM, Singh KB, Kamphuis LG (2019) The role of jasmonate signalling in quinolizidine alkaloid biosynthesis, wounding and aphid predation response in narrow-leafed lupin. Funct Plant Biol 46:443–454

    CAS  PubMed  Google Scholar 

  • Gao LL, Hane JK, Kamphuis LG, Foley R, Shi BJ, Atkins CA, Singh KB (2011) Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing. BMC Genomics 12:521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert J, Lewis R, Wilkinson M, Caligari P (1999) Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor Appl Genet 98:1125–1131

    CAS  Google Scholar 

  • Gladstones J (1958) Induction of mutation in the west Australian blue lupin (Lupinus digitatus Forsk.) by X-irradiation. Aust J Agric Res 9:473–482

    Google Scholar 

  • Gladstones J (1967) Selection for economic characters in Lupinus angustifolius and L. digitatus. Aust J Exp Agric 7:360–366

    Google Scholar 

  • Gladstones JS (1970) Lupins as crop plants. Field Crop Abstr 23:123–148

    Google Scholar 

  • Gladstones JS (1974) Lupins of the Mediterranean region and Africa. Western Australia Department of Agriculture. Technical Bulletin

    Google Scholar 

  • Gladstones JS (1977) The narrow-leafed lupin in Western Australia (Lupinus angustifolius L.). Western Australian Department of Agriculture

    Google Scholar 

  • Gladstones J (1998) Distribution, origin, taxonomy, history and importance. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, UK

    Google Scholar 

  • Gladstones J, Francis C (1965) Low-alkaloid mutants of Lupinus digitatus Forsk. Nature 207:553

    CAS  Google Scholar 

  • Gladstones J, Hill G (1969) Selection for economic characters in Lupinus angustifolius and L. digitatus. 2. Time of flowering. Aust J Exp Agric 9:213–220

    Google Scholar 

  • Glazinska P, Wojciechowski W, Kulasek M, Glinkowski W, Marciniak K, Klajn N, Kesy J, Kopcewicz J (2017) De novo Transcriptome profiling of flowers, flower pedicels and pods of Lupinus luteus (yellow lupine) reveals complex expression changes during organ abscission. Front Plant Sci 8:641

    PubMed  PubMed Central  Google Scholar 

  • Gresta F, Wink M, Prins U, Abberton M, Capraro J, Scarafoni A, Hill G (2017) Lupins in European cropping systems. In: Murphy-Bokern D, Stoddard FL, Watson CA (eds) Legumes in cropping systems. The Centre for Agriculture and Bioscience International

    Google Scholar 

  • Gross R, von Baer E, Koch F, Marquard R, Trugo L, Wink M (1988) Chemical composition of a new variety of the Andean lupin (Lupinus mutabilis cv. Inti) with low-alkaloid content. J Food Compos Anal 1:353–361

    CAS  Google Scholar 

  • Hackbarth J (1957) Die Gene der Lupinenarten. II. Schmalblättrige Lupine (Lupinus angustifolius L.). Z Pflanzenzüchl 37:81–95

    Google Scholar 

  • Hackbarth J, Troll H-J (1959) Lupinen als Körnerleguminosen und Futterpflanzen. Handbuch der Pflanzenzüchtung 2:1–51

    Google Scholar 

  • Hallqvist C (1921) The inheritance of the flower coloour and the seed colour in Lupinus angustifolius. Hereditas 2:299–363

    Google Scholar 

  • Hammer K (1984) Das Domestikationssyndrom. Die Kulturpflanze 32:11–34

    Google Scholar 

  • Hane JK, Ming Y, Kamphuis LG, Nelson MN, Garg G, Atkins CA, Bayer PE, Bravo A, Bringans S, Cannon S, Edwards D, Foley R, Gao L-L, Harrison MJ, Huang W, Hurgobin B, Li S, Liu C-W, McGrath A, Morahan G, Murray J, Weller J, Jian J, Singh KB (2017) A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant–microbe interactions and legume evolution. Plant Biotechnol J 15:318–330

    CAS  PubMed  Google Scholar 

  • Hondelmann W (1984) The lupin—ancient and modern crop plant. Theor Appl Genet 68:1–9

    CAS  PubMed  Google Scholar 

  • Hufnagel B, Marques A, Soriano A, Marquès L, Divol F, Doumas P, Sallet E, Mancinotti D, Carrere S, Marande W, Arribat S, Keller J, Huneau C, Blein T, Aime D, Laguerre M, Taylor J, Schubert V, Nelson M, Geu-Flores F, Crespi M, Gallardo-Guerrero K, Delaux P-M, Salse J, Bergès H, Guyot R, Gouzy J, Péret B (2019) Genome sequence of the cluster root forming white lupin. bioRxiv:708917

    Google Scholar 

  • Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci 103:10334–10339

    CAS  PubMed  Google Scholar 

  • Iqbal MJ, Mamidi S, Ahsan R, Kianian SF, Coyne CJ, Hamama AA, Narina SS, Bhardwaj HL (2012) Population structure and linkage disequilibrium in Lupinus albus L. germplasm and its implication for association mapping. Theor Appl Genet 125:517–530

    CAS  PubMed  Google Scholar 

  • Iqbal M, Huynh M, Udall J, Kilian A, Adhikari K, Berger J, Erskine W, Nelson MN (2019) The first genetic map for yellow lupin enables genetic dissection of adaptation traits in an orphan grain legume crop. BMC Genetics 20:68

    Google Scholar 

  • Kamphuis LG, Hane JK, Nelson MN, Gao L, Atkins CA, Singh KB (2015) Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers. Plant Biotechnol J 13:14–25

    CAS  PubMed  Google Scholar 

  • Kasprzak A, Safár J, Janda J, Dolezel J, Wolko B, Naganowska B (2006) The bacterial artificial chromosome (BAC) library of the narrow-leafed lupin (Lupinus angustifolius L.). Cell Mol Biol Lett 11:396–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kroc M, Koczyk G, Święcicki W, Kilian A, Nelson MN (2014) New evidence of ancestral polyploidy in the Genistoid legume Lupinus angustifolius L. (narrow-leafed lupin). Theor Appl Genet 127:1237–1249

    PubMed  Google Scholar 

  • Kroc M, Koczyk G, Kamel KA, Czepiel K, Fedorowicz-Strońska O, Krajewski P, Kosińska J, Podkowiński J, Wilczura P, Święcicki W (2019) Transcriptome-derived investigation of biosynthesis of quinolizidine alkaloids in narrow-leafed lupin (Lupinus angustifolius L.) highlights candidate genes linked to iucundus locus. Sci Rep 9:2231

    Google Scholar 

  • Książkiewicz M, Nazzicari N, Yang HA, Nelson MN, Renshaw D, Rychel S, Ferrari B, Carelli M, Tomaszewska M, Stawiński S, Naganowska B, Wolko B, Annicchiarico P (2017) A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci Rep 7:15335

    PubMed  PubMed Central  Google Scholar 

  • Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA, Graham SW, Grosse I, Li Z, Melkonian M, Mirarab S, Porsch M, Quint M, Rensing SA, Soltis DE, Soltis PS, Stevenson DW, Ullrich KK, Wickett NJ, DeGironimo L, Edger PP, Jordon-Thaden IE, Joya S, Liu T, Melkonian B, Miles NW, Pokorny L, Quigley C, Thomas P, Villarreal JC, Augustin MM, Barrett MD, Baucom RS, Beerling DJ, Benstein RM, Biffin E, Brockington SF, Burge DO, Burris JN, Burris KP, Burtet-Sarramegna V, Caicedo AL, Cannon SB, Çebi Z, Chang Y, Chater C, Cheeseman JM, Chen T, Clarke ND, Clayton H, Covshoff S, Crandall-Stotler BJ, Cross H, dePamphilis CW, Der JP, Determann R, Dickson RC, Di Stilio VS, Ellis S, Fast E, Feja N, Field KJ, Filatov DA, Finnegan PM, Floyd SK, Fogliani B, García N, Gâteblé G, Godden GT, Goh F, Greiner S, Harkess A, Heaney JM, Helliwell KE, Heyduk K, Hibberd JM, Hodel RGJ, Hollingsworth PM, Johnson MTJ, Jost R, Joyce B, Kapralov MV, Kazamia E, Kellogg EA, Koch MA, Von Konrat M, Könyves K, Kutchan TM, Lam V, Larsson A, Leitch AR, Lentz R, Li F-W, Lowe AJ, Ludwig M, Manos PS, Mavrodiev E, McCormick MK, McKain M, McLellan T, McNeal JR, Miller RE, Nelson MN, Peng Y, Ralph P, Real D, Riggins CW, Ruhsam M, Sage RF, Sakai AK, Scascitella M, Schilling EE, Schlösser E-M, Sederoff H, Servick S, Sessa EB, Shaw AJ, Shaw SW, Sigel EM, Skema C, Smith AG, Smithson A, Stewart CN, Stinchcombe JR, Szövényi P, Tate JA, Tiebel H, Trapnell D, Villegente M, Wang C-N, Weller SG, Wenzel M, Weststrand S, Westwood JH, Whigham DF, Wu S, Wulff AS, Yang Y, Zhu D, Zhuang C, Zuidof J, Chase MW, Pires JC, Rothfels CJ, Yu J, Chen C, Chen L, Cheng S, Li J, Li R, Li X, Lu H, Ou Y, Sun X, Tan X, Tang J, Tian Z, Wang F, Wang J, Wei X, Xu X, Yan Z, Yang F, Zhong X, Zhou F, Zhu Y, Zhang Y, Ayyampalayam S, Barkman TJ, Nguyen N-p, Matasci N, Nelson DR, Sayyari E, Wafula EK, Walls RL, Warnow T, An H, Arrigo N, Baniaga AE, Galuska S, Jorgensen SA, Kidder TI, Kong H, Lu-Irving P, Marx HE, Qi X, Reardon CR, Sutherland BL, Tiley GP, Welles SR, Yu R, Zhan S, Gramzow L, Theißen G, Wong GK-S (2019) One thousand plant transcriptomes and the phylogenomics of green plants. One thousand plant transcriptomes initiative. Nature 574:679–685

    Google Scholar 

  • Li X, Yang H, Buirchell B, Yan G (2011) Development of a DNA marker tightly linked to low-alkaloid gene iucundus in narrow-leafed lupin (Lupinus angustifolius L.) for marker-assisted selection. Crop Pasture Sci 62:218–224

    CAS  Google Scholar 

  • Lucas MM, Stoddard FL, Annicchiarico P, Frías J, Martínez-Villaluenga C, Sussmann D, Duranti M, Seger A, Zander PM, Pueyo JJ (2015) The future of lupin as a protein crop in Europe. Front Plant Sci 6:705

    PubMed  PubMed Central  Google Scholar 

  • Martin GE, Rousseau-Gueutin M, Cordonnier S, Lima O, Michon-Coudouel S, Naquin D, de Carvalho JF, Aïnouche M, Salmon A, Aïnouche A (2014) The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family. Ann Bot 113:1197–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mikolajczyk J (1966) Genetic studies in Lupinus angustifolius. Part III. Inheritance of the alkaloid content, seed hardness and length of the growing season in blue lupin. Genet Pol 7:181–196

    Google Scholar 

  • Mousavi-Derazmahalleh M, Bayer PE, Nevado B, Hurgobin B, Filatov D, Kilian A, Kamphuis LG, Singh KB, Berger JD, Hane JK, Edwards D, Erskine W, Nelson MN (2018a) Exploring the genetic and adaptive diversity of a pan-mediterranean crop wild relative: narrow-leafed lupin. Theor Appl Genet 131:887–901

    PubMed  PubMed Central  Google Scholar 

  • Mousavi-Derazmahalleh M, Nevado B, Bayer PE, Filatov DA, Hane JK, Edwards D, Erskine W, Nelson MN (2018b) The western Mediterranean region provided the founder population of domesticated narrow-leafed lupin. Theor Appl Genet 131:2543–2554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mousavi-Derazmahalleh M, Bayer PE, Hane JK, Valliyodan B, Nguyen HT, Nelson MN, Erskine W, Varshney RK, Papa R, Edwards D (2019) Adapting legume crops to climate change using genomic approaches. Plant Cell Environ 42:6–19

    CAS  PubMed  Google Scholar 

  • Naganowska B, Wolko B, Sliwińska E, Kaczmarek Z (2003) Nuclear DNA content variation and species relationships in the genus Lupinus (Fabaceae). Ann Bot 92:349–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson M, Phan H, Ellwood S, Moolhuijzen P, Hane J, Williams A, O'Lone C, Fosu-Nyarko J, Scobie M, Cakir M, Jones M, Bellgard M, Ksiazkiewicz M, Wolko B, Barker S, Oliver R, Cowling W (2006) The first gene-based map of Lupinus angustifolius L.- location of domestication genes and conserved synteny with Medicago truncatula. Theor Appl Genet 113:225–238

    CAS  PubMed  Google Scholar 

  • Nelson MN, Moolhuijzen PM, Boersma JG, Chudy M, Lesniewska K, Bellgard M, Oliver RP, Swiecicki W, Wolko B, Cowling WA, Ellwood SR (2010) Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus. DNA Res 17:73–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson MN, Książkiewicz M, Rychel S, Besharat N, Taylor CM, Wyrwa K, Jost R, Erskine W, Cowling WA, Berger JD, Batley J, Weller JL, Naganowska B, Wolko B (2017) The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T (FT) homologue. New Phytol 213:220–232

    CAS  PubMed  Google Scholar 

  • Nevado B, Atchison GW, Hughes CE, Filatov DA (2016) Widespread adaptive evolution during repeated evolutionary radiations in New World lupins. Nat Commun 7:12384

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D, Gronwald JW, Vance CP (2013) An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161:705–724

    Google Scholar 

  • Parra-González LB, Aravena-Abarzúa GA, Navarro-Navarro CS, Udall J, Maughan J, Peterson LM, Salvo-Garrido HE, Maureira-Butler IJ (2012) Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies. BMC Genomics 13:425

    Google Scholar 

  • Phan HTT, Ellwood SR, Adhikari K, Nelson MN, Oliver RP (2007) The first genetic and comparative map of white lupin (Lupinus albus L.): identification of QTLs for anthracnose resistance and flowering time, and a locus for alkaloid content. DNA Res 14:59–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raman R, Luckett DJ, Raman H (2008) Estimation of genetic diversity in albus lupin (Lupinus albus L.) using DArT and genic markers. International Lupin Association, Canterbury

    Google Scholar 

  • Raman R, Cowley RB, Raman H, Luckett DJ (2014) Analyses using SSR and DArT molecular markers reveal that Ethiopian accessions of white lupin (Lupinus albus L.) represent a unique genepool. Open J Genet 4:87

    Google Scholar 

  • Rychel S, Książkiewicz M, Tomaszewska M, Bielski W, Wolko B (2019) FLOWERING LOCUS T, GIGANTEA, SEPALLATA, and FRIGIDA homologs are candidate genes involved in white lupin (Lupinus albus L.) early flowering. Mol Breed 39:43

    Google Scholar 

  • Secco D, Shou H, Whelan J, Berkowitz O (2014) RNA-seq analysis identifies an intricate regulatory network controlling cluster root development in white lupin. BMC Genomics 15:230

    PubMed  PubMed Central  Google Scholar 

  • Swiecicki W, Swiecicki W (1995) Domestication and breeding improvement of narrow-leafed lupin (L. angustifolius L.). J Appl Genet 2:155–167

    Google Scholar 

  • Taylor CM, Kamphuis LG, Zhang W, Garg G, Berger JD, Mousavi-Derazmahalleh M, Bayer PE, Edwards D, Singh KB, Cowling WA, Nelson MN (2019) INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ 42:174–187

    CAS  PubMed  Google Scholar 

  • Uhde-Stone C, Gilbert G, Johnson JM, Litjens R, Zinn KE, Temple SJ, Vance CP, Allan DL (2003) Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant Soil 248:99–116

    CAS  Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–366

    Google Scholar 

  • Vipin CA, Luckett DJ, Harper JD, Ash GJ, Kilian A, Ellwood SR, Phan HT, Raman H (2013) Construction of integrated linkage map of a recombinant inbred line population of white lupin (Lupinus albus L.). Breed Sci 63:292–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Sengbusch R (1942) Sweet lupins and oil lupins. The history of the origin of some new crop plants. Landwirtschaftlic Jahrb 91:719–880

    Google Scholar 

  • Wang Z, Straub D, Yang H, Kania A, Shen J, Ludewig U, Neumann G (2014) The regulatory network of cluster-root function and development in phosphate-deficient white lupin (Lupinus albus) identified by transcriptome sequencing. Physiol Plant 151:323–338

    CAS  PubMed  Google Scholar 

  • Williams W, Harrison JEM, Jayasekera S (1984) Genetical control of alkaloid production in Lupinus mutabilis and the effect of a mutant allele Mutal isolated following chemical mutagenesis. Euphytica 33:811–817

    CAS  Google Scholar 

  • Wink M, Meißner C, Witte L (1995) Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry 38:139–153

    CAS  Google Scholar 

  • Wolko B, Weeden N (1989) Estimation of Lupinus genome polyploidy on the basis of isozymic loci number. Genet Pol 30

    Google Scholar 

  • Wolko B, Clements JC, Naganowska B, Nelson MN, Yang H (2011) Lupinus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Heidelberg

    Google Scholar 

  • Yang H, Tao Y, Zheng Z, Zhang Q, Zhou G, Sweetingham MW, Howieson JG, Li C (2013) Draft genome sequence, and a sequence-defined genetic linkage map of the legume crop species Lupinus angustifolius L. PLoS ONE 8:e64799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Nagy I, Mancinotti D, Otterbach SL, Andersen TB, Motawia MS, Asp T, Geu-Flores F (2017) Transcript profiling of a bitter variety of narrow-leafed lupin to discover alkaloid biosynthetic genes. J Exp Bot 68:5527–5537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Jian J, Wang P, Li C, Tao Y, Li X, Renshaw D, Clements J, Sweetingham M, Yang H (2018) Construction of an ultra-high density consensus genetic map, and enhancement of the physical map from genome sequencing in Lupinus angustifolius. Theor Appl Genet 131:209–223

    CAS  PubMed  Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean basin. Oxford University Press on Demand

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew N. Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taylor, J.L., De Angelis, G., Nelson, M.N. (2020). How Have Narrow-Leafed Lupin Genomic Resources Enhanced Our Understanding of Lupin Domestication?. In: Singh, K., Kamphuis, L., Nelson, M. (eds) The Lupin Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-21270-4_8

Download citation

Publish with us

Policies and ethics