How Have Narrow-Leafed Lupin Genomic Resources Enhanced Our Understanding of Lupin Domestication?

Part of the Compendium of Plant Genomes book series (CPG)


Lupins provide an insightful model for plant domestication with five species domesticated over a wide range of time and geography. The most intensively studied species is narrow-leafed lupin, a twentieth-century domesticate where the addition of each successive domestication trait was documented in the scientific literature. Foundational to the advances made in our understanding of lupin domestication was the availability of excellent genetic resources: Well-annotated wild seed collections, published pedigrees of Australian narrow-leafed lupin cultivars and a suite of wild × domesticated cross populations. Rapid developments in genomic technologies culminating in the reference genome for narrow-leafed lupin have greatly increased our understanding of the origins of domesticated lupins, how diversity has been profoundly affected and the molecular control of domestication genes. This chapter provides an overview of our current understanding of lupin domestication and how this knowledge can equip lupin breeders to create more diverse and productive cultivars.


  1. Annicchiarico P, Harzic N, Carroni AM (2010) Adaptation, diversity, and exploitation of global white lupin (Lupinus albus L.) landrace genetic resources. Field Crops Res 119:114–124Google Scholar
  2. Atnaf M, Tesfaye K, Dagne K, Wegari D (2015) Extent and pattern of genetic diversity in Ethiopian white lupin landraces for agronomical and phenological traits. Afr Crop Sci J 23:327–341Google Scholar
  3. Atnaf M, Yao N, Martina K, Dagne K, Wegary D, Tesfaye K (2017) Molecular genetic diversity and population structure of Ethiopian white lupin landraces: implications for breeding and conservation. PLoS ONE 12:e0188696PubMedPubMedCentralGoogle Scholar
  4. Berger JD, Buirchell BJ, Luckett DJ, Nelson MN (2012) Domestication bottlenecks limit genetic diversity and constrain adaptation in narrow-leafed lupin (Lupinus angustifolius L.). Theor Appl Genet 124:637–652PubMedGoogle Scholar
  5. Berger JD, Clements JC, Nelson MN, Kamphuis LG, Singh KB, Buirchell B (2013) The essential role of genetic resources in narrow-leafed lupin improvement. Crop Pasture Sci 64:361–373Google Scholar
  6. Berger JD, Shrestha D, Ludwig C (2017) Reproductive strategies in Mediterranean legumes: trade-offs between phenology, seed size and vigor within and between wild and domesticated Lupinus species collected along aridity gradients. Front Plant Sci 8:548PubMedPubMedCentralGoogle Scholar
  7. Boersma JG, Pallotta M, Li C, Buirchell BJ, Sivasithamparam K, Yang H (2005) Construction of a genetic linkage map using MFLP and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus angustifolius L.). Cell Mol Biol Lett 10:331–344PubMedGoogle Scholar
  8. Boersma J, Nelson M, Sivasithamparam K, Yang H (2009) Development of sequence-specific PCR markers linked to the Tardus gene that reduces pod shattering in narrow-leafed lupin (Lupinus angustifolius L.). Mol Breed 23:259–267Google Scholar
  9. Bunsupa S, Okada T, Saito K, Yamazaki M (2011) An acyltransferase-like gene obtained by differential gene expression profiles of quinolizidine alkaloid-producing and nonproducing cultivars of Lupinus angustifolius. Plant Biotechnol 28:89–94Google Scholar
  10. Bunsupa S, Katayama K, Ikeura E, Oikawa A, Toyooka K, Saito K, Yamazaki M (2012) Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in Leguminosae. Plant Cell 24:1202–1216PubMedPubMedCentralGoogle Scholar
  11. Cannon SB, McKain MR, Harkess A, Nelson MN, Dash S, Deyholos MK, Peng Y, Joyce B, Stewart CN, Rolf M, Kutchan T, Tan X, Chen C, Zhang Y, Carpenter E, Wong GK-S, Doyle JJ, Leebens-Mack J (2015) Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol Biol Evol 32:193–210PubMedGoogle Scholar
  12. Clements J, Sweetingham M, Smith L, Francis G, Thomas G, Sipsas S (2008) Crop improvement in Lupinus mutabilis for Australian agriculture-progress and prospects. Lupins for health and wealth. In: Proceedings of the 12th international lupin conference, Fremantle, Western Australia. International Lupin Association, pp 244–250, 14–18 Sept 2008Google Scholar
  13. Cowling WA, Huyghe C, Święcicki W (1998) Lupin breeding. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production, and utilization. CAB International, Wallingford, UKGoogle Scholar
  14. Cowling WA, Buirchell BJ, Falk DE (2009) A model for introducing novel genetic diversity from wild relatives into elite crop populations. Crop Pasture Sci 60:1009–1015Google Scholar
  15. Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707Google Scholar
  16. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321Google Scholar
  17. Eastwood RJ, Hughes CE (2008) Origins of domestication of Lupinus mutabilis in the Andes. Lupins for health and wealth. In: Proceedings of the 12th international lupin conference, pp 14–18Google Scholar
  18. FAO (2017) FAOSTAT: crop production data. Food and Agriculture Organisation of the United Nations. Accessed Dec 2018
  19. Foley RC, Gao LL, Spriggs A, Soo LY, Goggin DE, Smith PM, Atkins CA, Singh KB (2011) Identification and characterisation of seed storage protein transcripts from Lupinus angustifolius. BMC Plant Biol 11:59PubMedPubMedCentralGoogle Scholar
  20. Foley RC, Jimenez-Lopez JC, Kamphuis LG, Hane JK, Melser S, Singh KB (2015) Analysis of conglutin seed storage proteins across lupin species using transcriptomic, protein and comparative genomic approaches. BMC Plant Biol 15:106PubMedPubMedCentralGoogle Scholar
  21. Forbes I, Wells HD (1968) Hard and soft seededness in Blue Lupine, Lupinus angustifolius L.: inheritance and phenotype classification 1. Crop Sci 8:195–197Google Scholar
  22. French R, Sweetingham M, Shea G (2001) A comparison of the adaptation of yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) to acid sandplain soils in low rainfall agricultural areas of Western Australia. Aust J Agric Res 52:945–954Google Scholar
  23. Frick KM, Kamphuis LG, Siddique KH, Singh KB, Foley RC (2017) Quinolizidine alkaloid biosynthesis in lupins and prospects for grain quality improvement. Front Plant Sci 8:87PubMedPubMedCentralGoogle Scholar
  24. Frick KM, Foley RC, Kamphuis LG, Siddique KHM, Garg G, Singh KB (2018) Characterisation of the genetic factors affecting quinolizidine alkaloid biosynthesis and its response to abiotic stress in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ 41:2155–2168PubMedGoogle Scholar
  25. Frick KM, Foley R, Siddique KHM, Singh KB, Kamphuis LG (2019) The role of jasmonate signalling in quinolizidine alkaloid biosynthesis, wounding and aphid predation response in narrow-leafed lupin. Funct Plant Biol 46:443–454PubMedGoogle Scholar
  26. Gao LL, Hane JK, Kamphuis LG, Foley R, Shi BJ, Atkins CA, Singh KB (2011) Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing. BMC Genomics 12:521PubMedPubMedCentralGoogle Scholar
  27. Gilbert J, Lewis R, Wilkinson M, Caligari P (1999) Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor Appl Genet 98:1125–1131Google Scholar
  28. Gladstones J (1958) Induction of mutation in the west Australian blue lupin (Lupinus digitatus Forsk.) by X-irradiation. Aust J Agric Res 9:473–482Google Scholar
  29. Gladstones J (1967) Selection for economic characters in Lupinus angustifolius and L. digitatus. Aust J Exp Agric 7:360–366Google Scholar
  30. Gladstones JS (1970) Lupins as crop plants. Field Crop Abstr 23:123–148Google Scholar
  31. Gladstones JS (1974) Lupins of the Mediterranean region and Africa. Western Australia Department of Agriculture. Technical BulletinGoogle Scholar
  32. Gladstones JS (1977) The narrow-leafed lupin in Western Australia (Lupinus angustifolius L.). Western Australian Department of AgricultureGoogle Scholar
  33. Gladstones J (1998) Distribution, origin, taxonomy, history and importance. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, UKGoogle Scholar
  34. Gladstones J, Francis C (1965) Low-alkaloid mutants of Lupinus digitatus Forsk. Nature 207:553Google Scholar
  35. Gladstones J, Hill G (1969) Selection for economic characters in Lupinus angustifolius and L. digitatus. 2. Time of flowering. Aust J Exp Agric 9:213–220Google Scholar
  36. Glazinska P, Wojciechowski W, Kulasek M, Glinkowski W, Marciniak K, Klajn N, Kesy J, Kopcewicz J (2017) De novo Transcriptome profiling of flowers, flower pedicels and pods of Lupinus luteus (yellow lupine) reveals complex expression changes during organ abscission. Front Plant Sci 8:641PubMedPubMedCentralGoogle Scholar
  37. Gresta F, Wink M, Prins U, Abberton M, Capraro J, Scarafoni A, Hill G (2017) Lupins in European cropping systems. In: Murphy-Bokern D, Stoddard FL, Watson CA (eds) Legumes in cropping systems. The Centre for Agriculture and Bioscience InternationalGoogle Scholar
  38. Gross R, von Baer E, Koch F, Marquard R, Trugo L, Wink M (1988) Chemical composition of a new variety of the Andean lupin (Lupinus mutabilis cv. Inti) with low-alkaloid content. J Food Compos Anal 1:353–361Google Scholar
  39. Hackbarth J (1957) Die Gene der Lupinenarten. II. Schmalblättrige Lupine (Lupinus angustifolius L.). Z Pflanzenzüchl 37:81–95Google Scholar
  40. Hackbarth J, Troll H-J (1959) Lupinen als Körnerleguminosen und Futterpflanzen. Handbuch der Pflanzenzüchtung 2:1–51Google Scholar
  41. Hallqvist C (1921) The inheritance of the flower coloour and the seed colour in Lupinus angustifolius. Hereditas 2:299–363Google Scholar
  42. Hammer K (1984) Das Domestikationssyndrom. Die Kulturpflanze 32:11–34Google Scholar
  43. Hane JK, Ming Y, Kamphuis LG, Nelson MN, Garg G, Atkins CA, Bayer PE, Bravo A, Bringans S, Cannon S, Edwards D, Foley R, Gao L-L, Harrison MJ, Huang W, Hurgobin B, Li S, Liu C-W, McGrath A, Morahan G, Murray J, Weller J, Jian J, Singh KB (2017) A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant–microbe interactions and legume evolution. Plant Biotechnol J 15:318–330PubMedGoogle Scholar
  44. Hondelmann W (1984) The lupin—ancient and modern crop plant. Theor Appl Genet 68:1–9PubMedGoogle Scholar
  45. Hufnagel B, Marques A, Soriano A, Marquès L, Divol F, Doumas P, Sallet E, Mancinotti D, Carrere S, Marande W, Arribat S, Keller J, Huneau C, Blein T, Aime D, Laguerre M, Taylor J, Schubert V, Nelson M, Geu-Flores F, Crespi M, Gallardo-Guerrero K, Delaux P-M, Salse J, Bergès H, Guyot R, Gouzy J, Péret B (2019) Genome sequence of the cluster root forming white lupin. bioRxiv:708917Google Scholar
  46. Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci 103:10334–10339PubMedGoogle Scholar
  47. Iqbal MJ, Mamidi S, Ahsan R, Kianian SF, Coyne CJ, Hamama AA, Narina SS, Bhardwaj HL (2012) Population structure and linkage disequilibrium in Lupinus albus L. germplasm and its implication for association mapping. Theor Appl Genet 125:517–530PubMedGoogle Scholar
  48. Iqbal M, Huynh M, Udall J, Kilian A, Adhikari K, Berger J, Erskine W, Nelson MN (2019) The first genetic map for yellow lupin enables genetic dissection of adaptation traits in an orphan grain legume crop. BMC Genetics 20:68Google Scholar
  49. Kamphuis LG, Hane JK, Nelson MN, Gao L, Atkins CA, Singh KB (2015) Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers. Plant Biotechnol J 13:14–25PubMedGoogle Scholar
  50. Kasprzak A, Safár J, Janda J, Dolezel J, Wolko B, Naganowska B (2006) The bacterial artificial chromosome (BAC) library of the narrow-leafed lupin (Lupinus angustifolius L.). Cell Mol Biol Lett 11:396–407PubMedPubMedCentralGoogle Scholar
  51. Kroc M, Koczyk G, Święcicki W, Kilian A, Nelson MN (2014) New evidence of ancestral polyploidy in the Genistoid legume Lupinus angustifolius L. (narrow-leafed lupin). Theor Appl Genet 127:1237–1249PubMedGoogle Scholar
  52. Kroc M, Koczyk G, Kamel KA, Czepiel K, Fedorowicz-Strońska O, Krajewski P, Kosińska J, Podkowiński J, Wilczura P, Święcicki W (2019) Transcriptome-derived investigation of biosynthesis of quinolizidine alkaloids in narrow-leafed lupin (Lupinus angustifolius L.) highlights candidate genes linked to iucundus locus. Sci Rep 9:2231Google Scholar
  53. Książkiewicz M, Nazzicari N, Yang HA, Nelson MN, Renshaw D, Rychel S, Ferrari B, Carelli M, Tomaszewska M, Stawiński S, Naganowska B, Wolko B, Annicchiarico P (2017) A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci Rep 7:15335PubMedPubMedCentralGoogle Scholar
  54. Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA, Graham SW, Grosse I, Li Z, Melkonian M, Mirarab S, Porsch M, Quint M, Rensing SA, Soltis DE, Soltis PS, Stevenson DW, Ullrich KK, Wickett NJ, DeGironimo L, Edger PP, Jordon-Thaden IE, Joya S, Liu T, Melkonian B, Miles NW, Pokorny L, Quigley C, Thomas P, Villarreal JC, Augustin MM, Barrett MD, Baucom RS, Beerling DJ, Benstein RM, Biffin E, Brockington SF, Burge DO, Burris JN, Burris KP, Burtet-Sarramegna V, Caicedo AL, Cannon SB, Çebi Z, Chang Y, Chater C, Cheeseman JM, Chen T, Clarke ND, Clayton H, Covshoff S, Crandall-Stotler BJ, Cross H, dePamphilis CW, Der JP, Determann R, Dickson RC, Di Stilio VS, Ellis S, Fast E, Feja N, Field KJ, Filatov DA, Finnegan PM, Floyd SK, Fogliani B, García N, Gâteblé G, Godden GT, Goh F, Greiner S, Harkess A, Heaney JM, Helliwell KE, Heyduk K, Hibberd JM, Hodel RGJ, Hollingsworth PM, Johnson MTJ, Jost R, Joyce B, Kapralov MV, Kazamia E, Kellogg EA, Koch MA, Von Konrat M, Könyves K, Kutchan TM, Lam V, Larsson A, Leitch AR, Lentz R, Li F-W, Lowe AJ, Ludwig M, Manos PS, Mavrodiev E, McCormick MK, McKain M, McLellan T, McNeal JR, Miller RE, Nelson MN, Peng Y, Ralph P, Real D, Riggins CW, Ruhsam M, Sage RF, Sakai AK, Scascitella M, Schilling EE, Schlösser E-M, Sederoff H, Servick S, Sessa EB, Shaw AJ, Shaw SW, Sigel EM, Skema C, Smith AG, Smithson A, Stewart CN, Stinchcombe JR, Szövényi P, Tate JA, Tiebel H, Trapnell D, Villegente M, Wang C-N, Weller SG, Wenzel M, Weststrand S, Westwood JH, Whigham DF, Wu S, Wulff AS, Yang Y, Zhu D, Zhuang C, Zuidof J, Chase MW, Pires JC, Rothfels CJ, Yu J, Chen C, Chen L, Cheng S, Li J, Li R, Li X, Lu H, Ou Y, Sun X, Tan X, Tang J, Tian Z, Wang F, Wang J, Wei X, Xu X, Yan Z, Yang F, Zhong X, Zhou F, Zhu Y, Zhang Y, Ayyampalayam S, Barkman TJ, Nguyen N-p, Matasci N, Nelson DR, Sayyari E, Wafula EK, Walls RL, Warnow T, An H, Arrigo N, Baniaga AE, Galuska S, Jorgensen SA, Kidder TI, Kong H, Lu-Irving P, Marx HE, Qi X, Reardon CR, Sutherland BL, Tiley GP, Welles SR, Yu R, Zhan S, Gramzow L, Theißen G, Wong GK-S (2019) One thousand plant transcriptomes and the phylogenomics of green plants. One thousand plant transcriptomes initiative. Nature 574:679–685Google Scholar
  55. Li X, Yang H, Buirchell B, Yan G (2011) Development of a DNA marker tightly linked to low-alkaloid gene iucundus in narrow-leafed lupin (Lupinus angustifolius L.) for marker-assisted selection. Crop Pasture Sci 62:218–224Google Scholar
  56. Lucas MM, Stoddard FL, Annicchiarico P, Frías J, Martínez-Villaluenga C, Sussmann D, Duranti M, Seger A, Zander PM, Pueyo JJ (2015) The future of lupin as a protein crop in Europe. Front Plant Sci 6:705PubMedPubMedCentralGoogle Scholar
  57. Martin GE, Rousseau-Gueutin M, Cordonnier S, Lima O, Michon-Coudouel S, Naquin D, de Carvalho JF, Aïnouche M, Salmon A, Aïnouche A (2014) The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family. Ann Bot 113:1197–1210PubMedPubMedCentralGoogle Scholar
  58. Mikolajczyk J (1966) Genetic studies in Lupinus angustifolius. Part III. Inheritance of the alkaloid content, seed hardness and length of the growing season in blue lupin. Genet Pol 7:181–196Google Scholar
  59. Mousavi-Derazmahalleh M, Bayer PE, Nevado B, Hurgobin B, Filatov D, Kilian A, Kamphuis LG, Singh KB, Berger JD, Hane JK, Edwards D, Erskine W, Nelson MN (2018a) Exploring the genetic and adaptive diversity of a pan-mediterranean crop wild relative: narrow-leafed lupin. Theor Appl Genet 131:887–901PubMedPubMedCentralGoogle Scholar
  60. Mousavi-Derazmahalleh M, Nevado B, Bayer PE, Filatov DA, Hane JK, Edwards D, Erskine W, Nelson MN (2018b) The western Mediterranean region provided the founder population of domesticated narrow-leafed lupin. Theor Appl Genet 131:2543–2554PubMedPubMedCentralGoogle Scholar
  61. Mousavi-Derazmahalleh M, Bayer PE, Hane JK, Valliyodan B, Nguyen HT, Nelson MN, Erskine W, Varshney RK, Papa R, Edwards D (2019) Adapting legume crops to climate change using genomic approaches. Plant Cell Environ 42:6–19PubMedGoogle Scholar
  62. Naganowska B, Wolko B, Sliwińska E, Kaczmarek Z (2003) Nuclear DNA content variation and species relationships in the genus Lupinus (Fabaceae). Ann Bot 92:349–355PubMedPubMedCentralGoogle Scholar
  63. Nelson M, Phan H, Ellwood S, Moolhuijzen P, Hane J, Williams A, O'Lone C, Fosu-Nyarko J, Scobie M, Cakir M, Jones M, Bellgard M, Ksiazkiewicz M, Wolko B, Barker S, Oliver R, Cowling W (2006) The first gene-based map of Lupinus angustifolius L.- location of domestication genes and conserved synteny with Medicago truncatula. Theor Appl Genet 113:225–238PubMedGoogle Scholar
  64. Nelson MN, Moolhuijzen PM, Boersma JG, Chudy M, Lesniewska K, Bellgard M, Oliver RP, Swiecicki W, Wolko B, Cowling WA, Ellwood SR (2010) Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus. DNA Res 17:73–83PubMedPubMedCentralGoogle Scholar
  65. Nelson MN, Książkiewicz M, Rychel S, Besharat N, Taylor CM, Wyrwa K, Jost R, Erskine W, Cowling WA, Berger JD, Batley J, Weller JL, Naganowska B, Wolko B (2017) The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T (FT) homologue. New Phytol 213:220–232PubMedGoogle Scholar
  66. Nevado B, Atchison GW, Hughes CE, Filatov DA (2016) Widespread adaptive evolution during repeated evolutionary radiations in New World lupins. Nat Commun 7:12384PubMedPubMedCentralGoogle Scholar
  67. O’Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D, Gronwald JW, Vance CP (2013) An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161:705–724Google Scholar
  68. Parra-González LB, Aravena-Abarzúa GA, Navarro-Navarro CS, Udall J, Maughan J, Peterson LM, Salvo-Garrido HE, Maureira-Butler IJ (2012) Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies. BMC Genomics 13:425Google Scholar
  69. Phan HTT, Ellwood SR, Adhikari K, Nelson MN, Oliver RP (2007) The first genetic and comparative map of white lupin (Lupinus albus L.): identification of QTLs for anthracnose resistance and flowering time, and a locus for alkaloid content. DNA Res 14:59–70PubMedPubMedCentralGoogle Scholar
  70. Raman R, Luckett DJ, Raman H (2008) Estimation of genetic diversity in albus lupin (Lupinus albus L.) using DArT and genic markers. International Lupin Association, CanterburyGoogle Scholar
  71. Raman R, Cowley RB, Raman H, Luckett DJ (2014) Analyses using SSR and DArT molecular markers reveal that Ethiopian accessions of white lupin (Lupinus albus L.) represent a unique genepool. Open J Genet 4:87Google Scholar
  72. Rychel S, Książkiewicz M, Tomaszewska M, Bielski W, Wolko B (2019) FLOWERING LOCUS T, GIGANTEA, SEPALLATA, and FRIGIDA homologs are candidate genes involved in white lupin (Lupinus albus L.) early flowering. Mol Breed 39:43Google Scholar
  73. Secco D, Shou H, Whelan J, Berkowitz O (2014) RNA-seq analysis identifies an intricate regulatory network controlling cluster root development in white lupin. BMC Genomics 15:230PubMedPubMedCentralGoogle Scholar
  74. Swiecicki W, Swiecicki W (1995) Domestication and breeding improvement of narrow-leafed lupin (L. angustifolius L.). J Appl Genet 2:155–167Google Scholar
  75. Taylor CM, Kamphuis LG, Zhang W, Garg G, Berger JD, Mousavi-Derazmahalleh M, Bayer PE, Edwards D, Singh KB, Cowling WA, Nelson MN (2019) INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ 42:174–187PubMedGoogle Scholar
  76. Uhde-Stone C, Gilbert G, Johnson JM, Litjens R, Zinn KE, Temple SJ, Vance CP, Allan DL (2003) Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant Soil 248:99–116Google Scholar
  77. Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–366Google Scholar
  78. Vipin CA, Luckett DJ, Harper JD, Ash GJ, Kilian A, Ellwood SR, Phan HT, Raman H (2013) Construction of integrated linkage map of a recombinant inbred line population of white lupin (Lupinus albus L.). Breed Sci 63:292–300PubMedPubMedCentralGoogle Scholar
  79. von Sengbusch R (1942) Sweet lupins and oil lupins. The history of the origin of some new crop plants. Landwirtschaftlic Jahrb 91:719–880Google Scholar
  80. Wang Z, Straub D, Yang H, Kania A, Shen J, Ludewig U, Neumann G (2014) The regulatory network of cluster-root function and development in phosphate-deficient white lupin (Lupinus albus) identified by transcriptome sequencing. Physiol Plant 151:323–338PubMedGoogle Scholar
  81. Williams W, Harrison JEM, Jayasekera S (1984) Genetical control of alkaloid production in Lupinus mutabilis and the effect of a mutant allele Mutal isolated following chemical mutagenesis. Euphytica 33:811–817Google Scholar
  82. Wink M, Meißner C, Witte L (1995) Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry 38:139–153Google Scholar
  83. Wolko B, Weeden N (1989) Estimation of Lupinus genome polyploidy on the basis of isozymic loci number. Genet Pol 30Google Scholar
  84. Wolko B, Clements JC, Naganowska B, Nelson MN, Yang H (2011) Lupinus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, HeidelbergGoogle Scholar
  85. Yang H, Tao Y, Zheng Z, Zhang Q, Zhou G, Sweetingham MW, Howieson JG, Li C (2013) Draft genome sequence, and a sequence-defined genetic linkage map of the legume crop species Lupinus angustifolius L. PLoS ONE 8:e64799PubMedPubMedCentralGoogle Scholar
  86. Yang T, Nagy I, Mancinotti D, Otterbach SL, Andersen TB, Motawia MS, Asp T, Geu-Flores F (2017) Transcript profiling of a bitter variety of narrow-leafed lupin to discover alkaloid biosynthetic genes. J Exp Bot 68:5527–5537PubMedPubMedCentralGoogle Scholar
  87. Zhou G, Jian J, Wang P, Li C, Tao Y, Li X, Renshaw D, Clements J, Sweetingham M, Yang H (2018) Construction of an ultra-high density consensus genetic map, and enhancement of the physical map from genome sequencing in Lupinus angustifolius. Theor Appl Genet 131:209–223PubMedGoogle Scholar
  88. Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean basin. Oxford University Press on DemandGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Royal Botanic Gardens, KewArdinglyUK
  2. 2.The University of Western AustraliaPerthAustralia
  3. 3.CSIRO Agriculture & FoodPerthAustralia

Personalised recommendations