Advertisement

Chromosomal Structure, History, and Genomic Synteny Relationships in Lupinus

Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

The genome assembly of narrow-leafed lupin (NLL, Lupinus angustifolius) provides critical information for inferring the evolutionary history of NLL relative to other species in the large genistoid clade and to other crop and model legumes. Based on analyses of genomic synteny, phylogenetic reconstructions, gene families, and chromosome counts, it is apparent that the ancestor of all lupin species experienced a whole-genome triplication approximately 20–30 million years ago; and that multiple chromosomal breakages, fusions, and independent duplications have subsequently led to various chromosomal counts in Lupinus. In comparison with other sequenced crop and model legume species, substantial genomic synteny is evident, frequently extending tens of megabases. Such synteny is useful information when looking for orthologous loci that may share functions identified in other legume species. At the same time, the early triplication in Lupinus and subsequent rearrangements in the genistoid and other legume lineages have scrambled the respective genomes at the chromosomal level; and the evolutionary distance to other crop and model legumes is substantial, with an estimated ~56 million years to the common ancestor.

References

  1. Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araujo AC, Kozik A, Kim KD, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimaraes PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SC, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48(4):438–446.  https://doi.org/10.1038/ng.3517CrossRefGoogle Scholar
  2. Cannon SB, McKain MR, Harkess A, Nelson MN, Dash S, Deyholos MK, Peng Y, Joyce B, Stewart CN Jr, Rolf M, Kutchan T, Tan X, Chen C, Zhang Y, Carpenter E, Wong GK, Doyle JJ, Leebens-Mack J (2015) Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol Biol Evol 32(1):193–210.  https://doi.org/10.1093/molbev/msu296CrossRefPubMedGoogle Scholar
  3. Dash S, Campbell JD, Cannon EK, Cleary AM, Huang W, Kalberer SR, Karingula V, Rice AG, Singh J, Umale PE, Weeks NT, Wilkey AP, Farmer AD, Cannon SB (2016) Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family. Nucleic Acids Res 44(D1):D1181–1188.  https://doi.org/10.1093/nar/gkv1159
  4. Gao LL, Hane JK, Kamphuis LG, Foley R, Shi BJ, Atkins CA, Singh KB (2011) Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing. BMC Genomics 12:521.  https://doi.org/10.1186/1471-2164-12-521CrossRefPubMedPubMedCentralGoogle Scholar
  5. Hane JK, Ming Y, Kamphuis LG, Nelson MN, Garg G, Atkins CA, Bayer PE, Bravo A, Bringans S, Cannon S, Edwards D, Foley R, Gao LL, Harrison MJ, Huang W, Hurgobin B, Li S, Liu CW, McGrath A, Morahan G, Murray J, Weller J, Jian J, Singh KB (2017) A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution. Plant Biotechnol J 15(3):318–330.  https://doi.org/10.1111/pbi.12615CrossRefPubMedGoogle Scholar
  6. Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci USA 103(27):10334–10339.  https://doi.org/10.1073/pnas.0601928103CrossRefPubMedGoogle Scholar
  7. Kamphuis LG, Hane JK, Nelson MN, Gao L, Atkins CA, Singh KB (2015) Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers. Plant Biotechnol J 13(1):14–25.  https://doi.org/10.1111/pbi.12229CrossRefPubMedGoogle Scholar
  8. Kasprzak A, Safar J, Janda J, Dolezel J, Wolko B, Naganowska B (2006) The bacterial artificial chromosome (BAC) library of the narrow-leafed lupin (Lupinus angustifolius L.). Cell Mol Biol Lett 11(3):396–407.  https://doi.org/10.2478/s11658-006-0033-3
  9. Kroc M, Koczyk G, Swiecicki W, Kilian A, Nelson MN (2014) New evidence of ancestral polyploidy in the Genistoid legume Lupinus angustifolius L. (narrow-leafed lupin). Theor Appl Genet 127(5):1237–1249.  https://doi.org/10.1007/s00122-014-2294-y
  10. Ksiazkiewicz M, Nazzicari N, Yang H, Nelson MN, Renshaw D, Rychel S, Ferrari B, Carelli M, Tomaszewska M, Stawinski S, Naganowska B, Wolko B, Annicchiarico P (2017) A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci Rep 7(1):15335.  https://doi.org/10.1038/s41598-017-15625-wCrossRefPubMedPubMedCentralGoogle Scholar
  11. Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 54(4):575–594CrossRefGoogle Scholar
  12. LPWG (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66(1):44–77CrossRefGoogle Scholar
  13. Naganowska B, Wolko B, Sliwinska E, Kaczmarek Z (2003) Nuclear DNA content variation and species relationships in the genus Lupinus (Fabaceae). Ann Bot 92(3):349–355.  https://doi.org/10.1093/aob/mcg145CrossRefPubMedPubMedCentralGoogle Scholar
  14. Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics (Oxford, England) 23(9):1061–1067.  https://doi.org/10.1093/bioinformatics/btm071CrossRefGoogle Scholar
  15. Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I (2015) The chromosome counts database (CCDB)—a community resource of plant chromosome numbers. New Phytol 206(1):19–26.  https://doi.org/10.1111/nph.13191CrossRefPubMedGoogle Scholar
  16. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183.  https://doi.org/10.1038/nature08670CrossRefPubMedGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Authors and Affiliations

  1. 1.USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research UnitAmesUSA

Personalised recommendations