Advertisement

Molecular Marker Resources Supporting the Australian Lupin Breeding Program

Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Over the last 60 years the Australian lupin industry has emerged to become the largest producer in the world, accounting for 85% of global lupin seed market. This progress was achieved by the rapid domestication process of the narrow-leafed lupin (Lupinus angustifolius L.) as a grain legume crop. Narrow-leafed lupin improvement has been based on the identification of donors carrying desirable alleles conferring particular agronomic traits and, subsequently, their orchestrated transfer by classical genetic approaches into domesticated germplasm. These traits include, among others, reduced pod shattering, low alkaloid content, seed water permeability, early flowering, and resistance to diseases caused by pathogenic fungi: anthracnose (Colletotrichum lupini) and Phomopsis stem blight (Diaporthe toxica). Moreover, some of these traits are related with recessive alleles requiring additional breeding effort. To facilitate selection of desirable genotypes in the progenies and cross derivatives, molecular markers linked to particular trait loci were developed and implemented in Australian breeding program.

References

  1. Adhikari KN, Buirchell BJ, Sweetingham MW (2012) Length of vernalization period affects flowering time in three lupin species. Plant Breed 131:631–636.  https://doi.org/10.1111/j.1439-0523.2012.01996.xCrossRefGoogle Scholar
  2. Berger JD, Buirchell BJ, Luckett DJ, Nelson MN (2012) Domestication bottlenecks limit genetic diversity and constrain adaptation in narrow-leafed lupin (Lupinus angustifolius L.). Theor Appl Genet 124:637–652.  https://doi.org/10.1007/s00122-011-1736-z
  3. Bielski W, Plewiński P, Rudy E, Rychel S, Książkiewicz M, Naganowska B, Wolko B (2016) Genotyping of Lupinus angustifolius L. core collection using sequence-defined markers linked to agronomic traits. In: Paper presented at the Polski Kongres Genetyki, Łódź, Poland, 19–22 September 2016Google Scholar
  4. Boersma JG, Buirchell BJ, Sivasithamparam K, Yang H (2007a) Development of a PCR marker tightly linked to mollis, the gene that controls seed dormancy in Lupinus angustifolius L. Plant Breed 126:612–616.  https://doi.org/10.1111/j.1439-0523.2007.01417.xCrossRefGoogle Scholar
  5. Boersma JG, Buirchell BJ, Sivasithamparam K, Yang H (2007b) Development of a sequence-specific PCR marker linked to the Ku gene which removes the vernalization requirement in narrow-leafed lupin. Plant Breed 126:306–309.  https://doi.org/10.1111/j.1439-0523.2007.01347.xCrossRefGoogle Scholar
  6. Boersma JG, Buirchell BJ, Sivasithamparam K, Yang H (2007c) Development of two sequence-specific PCR markers linked to the le gene that reduces pod shattering in narrow-leafed lupin (Lupinus angustifolius L.). Genet Mol Biol 30:623–629.  https://doi.org/10.1590/S1415-47572007000400020
  7. Boersma JG, Nelson MN, Sivasithamparam K, Yang HA (2009) Development of sequence-specific PCR markers linked to the Tardus gene that reduces pod shattering in narrow-leafed lupin (Lupinus angustifolius L.). Mol Breed 23:259–267.  https://doi.org/10.1007/s11032-008-9230-210.1007/s11032-008-9230-2
  8. Boersma JG, Pallotta M, Li C, Buirchell BJ, Sivasithamparam K, Yang H (2005) Construction of a genetic linkage map using MFLP and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus angustifolius L.). Cell Mol Biol Lett 10:331–344Google Scholar
  9. Brien SJ, Cowling WA, Potter RH, Jones RAC, Jones MGK (1999) A molecular marker for early maturity (Ku) and marker-assisted breeding of Lupinus angustifolius. In: van Santen E, Wink M, Weissmann S, Roemer P (eds) Lupin, an ancient crop for the new millenium. 9th international lupin conference, Klink/Müritz, Germany. International Lupin Association, Canterbury, New Zealand, pp 115–117Google Scholar
  10. Buirchell BJ, Yang H (2006) Breeding narrow-leafed lupins in Western Australia for yield, disease resistance and quality using recurrent selection and molecular markers. In: van Santen E, Hill GD (eds) México, where old and new world lupins meet. 11th international lupin conference, Guadalajara, Mexico, 2005. International Lupin Association, Canterbury, New Zealand, pp 10–13Google Scholar
  11. Cowley R, Luckett DJ, Ash GJ, Harper JDI, Vipin CA, Raman H, Ellwood S (2014) Identification of QTLs associated with resistance to Phomopsis pod blight (Diaporthe toxica) in Lupinus albus. Breed Sci 64:83–89.  https://doi.org/10.1270/jsbbs.64.83
  12. Cowling WA (1999) Pedigrees and characteristics of narrow-leafed lupin cultivars released in Australia from 1967 to 1998. Bull Agric West Aust 4365:4–11.  https://doi.org/10.13140/RG.2.1.1441.1600
  13. Cowling WA, Buirchell BJ, Falk DE (2009) A model for incorporating novel alleles from the primary gene pool into elite crop breeding programs while reselecting major genes for domestication or adaptation. Crop Pasture Sci 60:1009–1015.  https://doi.org/10.1071/CP08223CrossRefGoogle Scholar
  14. Cowling WA, Hamblin J, Wood PM, Gladstones JS (1987) Resistance to Phomopsis stem blight in Lupinus angustifolius L. Crop Sci 27:648–652.  https://doi.org/10.2135/cropsci1987.0011183X002700040007xCrossRefGoogle Scholar
  15. Fischer K et al (2015) Characterization and mapping of LanrBo: a locus conferring anthracnose resistance in narrow-leafed lupin (Lupinus angustifolius L.). Theor Appl Genet 128:2121–2130.  https://doi.org/10.1007/s00122-015-2572-3
  16. Forbes I, Wells HD (1968) Hard and soft seededness in blue lupine, Lupinus angustifolius L.: inheritance and phenotype classification. Crop Sci 8:195–197.  https://doi.org/10.2135/cropsci1968.0011183X000800020018x
  17. Gladstones J (1967) Selection for economic characters in Lupinus angustifolius and L. digitatus. Aust J Exp Agric 7:360–366.  https://doi.org/10.1071/EA9670360
  18. Gladstones J, Hill G (1969) Selection for economic characters in Lupinus angustifolius and L. digitatus. 2 Time of flowering. Aust J Exp Agric 9:213–220.  https://doi.org/10.1071/EA9690213CrossRefGoogle Scholar
  19. Gladstones JS (1970) Lupins as crop plants. Field Crop Abstr 23:26Google Scholar
  20. Gladstones JS, Atkins CA, Hamblin J (1998) Lupins as crop plants: biology, production, and utilization. CAB International, New YorkGoogle Scholar
  21. Grishin SY, Zayakin VV, Nam IY, Ageeva PA, Lukashevich MI, Kuptsov NS (2015) Identification of the Lanr1 gene of resistance to anthracnose of narrow-leafed lupine (Lupinus angustifolius L.) using DNA-markers AnSeq3 and AnSeq4 Sel'skokhozyaistvennaya. Biologiya 50:30–36.  https://doi.org/10.15389/agrobiology.2015.1.30eng
  22. Hackbarth J, Troll HJ (1956) Die Lupinen als Körnerleguminosen und Futterpflanzen. Handbuch der Pflanzenzüchtung. Verlag Paul Parey, Berlin, pp 1–51Google Scholar
  23. Hane JK et al (2017) A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution. Plant Biotechnol J 15:318–330.  https://doi.org/10.1111/pbi.12615
  24. Jago MV, Peterson JE, Payne AL, Campbell DG (1982) Lupinosis: response of sheep to different doses of phomopsin. Aust J Exp Biol Med Sci 60:239–251.  https://doi.org/10.1038/icb.1982.29
  25. Kamel KA, Kroc M, Swiecicki W (2015) Application of the high resolution melting analysis for genetic mapping of sequence tagged site markers in narrow-leafed lupin (Lupinus angustifolius L.). Acta Biochim Pol 62:533–540.  https://doi.org/10.18388/abp.2015_977
  26. Kamel KA, Święcicki W, Kaczmarek Z, Barzyk P (2016) Quantitative and qualitative content of alkaloids in seeds of a narrow-leafed lupin (Lupinus angustifolius L.) collection. Genet Resour Crop Evol 63:711–719.  https://doi.org/10.1007/s10722-015-0278-7
  27. Kamphuis LG, Hane JK, Nelson MN, Gao L, Atkins CA, Singh KB (2015) Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers. Plant Biotechnol J 13:14–25.  https://doi.org/10.1111/pbi.12229CrossRefPubMedGoogle Scholar
  28. Klinkowski M (1939) Beobachtungen über Krankheiten und Schädlinge iberischer Wildformen von Serradella und Lupine. Z Pflanzenkrankh (Pflanzenpathol) Pflanzenschutz 49:305–321Google Scholar
  29. Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410.  https://doi.org/10.1046/j.1365-313X.1993.04020403.xCrossRefPubMedGoogle Scholar
  30. Kozak B, Książkiewicz M, Plewiński P, Rychel S, Naganowska B, Galek R (2017) Integracja map łubinu wąskolistnego. In: Paper presented at the Znaczenie łubinu dla bioróżnorodności, Wrocław, Poland, 24–25 April 2017Google Scholar
  31. Kroc M, Czepiel K, Wilczura P, Mokrzycka M, Swiecicki W (2019a) Development and validation of a gene-targeted dCAPS marker for marker-assisted selection of low-alkaloid content in seeds of narrow-leafed lupin (Lupinus angustifolius L.). Genes 10:428.  https://doi.org/10.3390/genes10060428
  32. Kroc M et al (2019b) Transcriptome-derived investigation of biosynthesis of quinolizidine alkaloids in narrow-leafed lupin (Lupinus angustifolius L.) highlights candidate genes linked to iucundus locus. Sci Rep 9:2231.  https://doi.org/10.1038/s41598-018-37701-5
  33. Kroc M, Koczyk G, Święcicki W, Kilian A, Nelson MN (2014) New evidence of ancestral polyploidy in the Genistoid legume Lupinus angustifolius L. (narrow-leafed lupin). Theor Appl Genet 127:1237–1249.  https://doi.org/10.1007/s00122-014-2294-y
  34. Kruszka K, Wolko B (1999) Linkage maps of morphological and molecular markers in lupin. In: van Santen E, Wink M, Weissmann S, Roemer P (eds) Lupin, an ancient crop for the new millenium. 9th international lupin conference, Klink/Müritz, Germany. International Lupin Association, Canterbury, New Zealand, pp 100–106Google Scholar
  35. Książkiewicz M et al (2016) Profiling resistance of the narrow leafed lupin to pathogenic fungi: Colletotrichum lupini and Diaporthe toxica. In: Paper presented at the Polski Kongres Genetyki, Łódź, Poland, 19–22 September 2016Google Scholar
  36. Książkiewicz M et al (2019) Validation of Diaporthe toxica resistance markers in European Lupinus angustifolius germplasm and identification of novel resistance donors for marker-assisted selection. J Appl Genet (in press).  https://doi.org/10.1007/s13353-019-00521-y
  37. Książkiewicz M et al (2017) A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci Rep 7:15335.  https://doi.org/10.1038/s41598-017-15625-wCrossRefPubMedPubMedCentralGoogle Scholar
  38. Książkiewicz M et al (2013) Comparative genomics of Lupinus angustifolius gene-rich regions: BAC library exploration, genetic mapping and cytogenetics. BMC Genomics 14:79.  https://doi.org/10.1186/1471-2164-14-79
  39. Książkiewicz M et al (2015) Remnants of the legume ancestral genome preserved in gene-rich regions: insights from Lupinus angustifolius physical, genetic, and comparative mapping. Plant Mol Biol Rep 33:84–101.  https://doi.org/10.1007/s11105-014-0730-4
  40. Landers KF (1995) Vernalization responses in narrow-leafed lupin (Lupinus angustifolius) genotypes. Aust J Agric Res 46:1011–1025.  https://doi.org/10.1071/AR9951011
  41. Leśniewska K, Książkiewicz M, Nelson MN, Mahé F, Aïnouche A, Wolko B, Naganowska B (2011) Assignment of 3 genetic linkage groups to 3 chromosomes of narrow-leafed lupin. J Hered 102:228–236.  https://doi.org/10.1093/jhered/esq107
  42. Li X, Renshaw D, Yang H, Yan G (2010) Development of a co-dominant DNA marker tightly linked to gene tardus conferring reduced pod shattering in narrow-leafed lupin (Lupinus angustifolius L.). Euphytica 176:49–58.  https://doi.org/10.1007/s10681-010-0212-1
  43. Li X, Yang H, Buirchell B, Yan G (2011) Development of a DNA marker tightly linked to low-alkaloid gene iucundus in narrow-leafed lupin (Lupinus angustifolius L.) for marker-assisted selection. Crop Pasture Sci 62:218–224.  https://doi.org/10.1071/CP10352
  44. Li X, Buirchell B, Yan G, Yang H (2012a) A molecular marker linked to the mollis gene conferring soft-seediness for marker-assisted selection applicable to a wide range of crosses in lupin (Lupinus angustifolius L.) breeding. Mol Breed 29:361–370.  https://doi.org/10.1007/s11032-011-9552-3
  45. Li X, Yang H, Yan G (2012b) Development of a co-dominant DNA marker linked to the gene lentus conferring reduced pod shattering for marker-assisted selection in narrow-leafed lupin (Lupinus angustifolius) breeding. Plant Breed 131:540–544.  https://doi.org/10.1111/j.1439-0523.2012.01978.x
  46. Lin R et al (2009) Development of a sequence-specific PCR marker linked to the gene “pauper” conferring low-alkaloids in white lupin (Lupinus albus L.) for marker assisted selection. Mol Breed 23:153–161.  https://doi.org/10.1007/s11032-008-9222-2
  47. Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401PubMedPubMedCentralGoogle Scholar
  48. Miao ZH, Fortune JA, Gallagher J (2001) Anatomical structure and nutritive value of lupin seed coats. Aust J Agric Res 52:985–993.  https://doi.org/10.1071/AR00117CrossRefGoogle Scholar
  49. Mikolajczyk J (1966) Genetic studies in Lupinus angustifolius. 2. Inheritance of some morphological characters in blue lupine. Genetica Polonica 7:153–180Google Scholar
  50. Mousavi-Derazmahalleh M et al (2018a) Exploring the genetic and adaptive diversity of a pan-Mediterranean crop wild relative: narrow-leafed lupin. Theor Appl Genet 131:887–901.  https://doi.org/10.1007/s00122-017-3045-7CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mousavi-Derazmahalleh M et al (2018b) The western Mediterranean region provided the founder population of domesticated narrow-leafed lupin. Theor Appl Genet.  https://doi.org/10.1007/s00122-018-3171-xCrossRefPubMedPubMedCentralGoogle Scholar
  52. Narożna D, Książkiewicz M, Przysiecka Ł, Króliczak J, Wolko B, Naganowska B, Mądrzak CJ (2017) Legume isoflavone synthase genes have evolved by whole-genome and local duplications yielding transcriptionally active paralogs. Plant Sci 264:149–167.  https://doi.org/10.1016/j.plantsci.2017.09.007CrossRefPubMedGoogle Scholar
  53. Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392.  https://doi.org/10.1046/j.1365-313X.1998.00124.x
  54. Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18:613–615.  https://doi.org/10.1016/S0168-9525(02)02820-2CrossRefPubMedGoogle Scholar
  55. Nelson MN et al (2017) The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T (FT) homologue. New Phytol 213:220–232.  https://doi.org/10.1111/nph.14094
  56. Nelson MN et al (2010) Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume Lotus japonicus. DNA Res 17:73–83.  https://doi.org/10.1093/dnares/dsq001CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nelson MN et al (2006) The first gene-based map of Lupinus angustifolius L.-location of domestication genes and conserved synteny with Medicago truncatula. Theor Appl Genet 113:225–238.  https://doi.org/10.1007/s00122-006-0288-0
  58. Nirenberg HI, Feiler U, Hagedorn G (2002) Description of Colletotrichum lupini comb. nov. in modern terms. Mycologia 94:307–320.  https://doi.org/10.2307/3761809
  59. Poeverlein H (1936) Die Verbreitung der süddeutschen Uredineen Berichte der Bayerischen Botanischen Gesellschaft zur Erforschung der Flora 22:86-120Google Scholar
  60. Przysiecka Ł, Książkiewicz M, Wolko B, Naganowska B (2015) Structure, expression profile and phylogenetic inference of chalcone isomerase-like genes from the narrow-leafed lupin (Lupinus angustifolius L.) genome. Front Plant Sci 6:268.  https://doi.org/10.3389/fpls.2015.00268
  61. Rahman M, Gladstones J (1972) Control of lupin flower initiation by vernalization, photoperiod and temperature under controlled environment. Aust J Exp Agric 12:638–645.  https://doi.org/10.1071/EA9720638
  62. Ruge-Wehling B, Dieterich R, Thiele C, Eickmeyer F, Wehling P (2009) Resistance to anthracnose in narrow-leafed lupin (Lupinus angustifolius L.): sources of resistanceand development of molecular markers. J kulturpflanzen 61:62–65Google Scholar
  63. Rychel S, Książkiewicz M (2019) Development of gene-based molecular markers tagging low alkaloid pauper locus in white lupin (Lupinus albus L.). J Appl Genet 60:269–281.  https://doi.org/10.1007/s13353-019-00508-9
  64. Rychel S, Książkiewicz M, Tomaszewska M, Bielski W, Wolko B (2019) FLOWERING LOCUS T, GIGANTEA, SEPALLATA and FRIGIDA homologs are candidate genes involved in white lupin (Lupinus albus L.) early flowering. Mol Breed 39:43.  https://doi.org/10.1007/s11032-019-0952-0d
  65. Shan X, Blake TK, Talbert LE (1999) Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98:1072–1078.  https://doi.org/10.1007/s001220051169CrossRefGoogle Scholar
  66. Shankar M, Cowling WA, Sweetingham MW (1996) The expression of resistance to latent stem infection by Diaporthe toxica in narrow-leafed lupins. Phytopathology 692–697.  https://doi.org/10.1094/Phyto-86-692
  67. Shankar M, Sweetingham MW, Cowling WA (2002) Identification of alleles at two loci controlling resistance to Phomopsis stem blight in narrow-leafed lupin (Lupinus angustifolius L.). Euphytica 125:35–44.  https://doi.org/10.1023/A:1015704728492
  68. Smýkal P, Vernoud V, Blair MW, Soukup A, Thompson RD (2014) The role of the testa during development and in establishment of dormancy of the legume seed. Front Plant Sci 5.  https://doi.org/10.3389/fpls.2014.00351
  69. Stefanova KT, Buirchell B (2010) Multiplicative mixed models for genetic gain assessment in lupin breeding. Crop Sci 50:880–891.  https://doi.org/10.2135/cropsci2009.07.0402CrossRefGoogle Scholar
  70. Sunnucks P, Wilson AC, Beheregaray LB, Zenger K, French J, Taylor AC (2000) SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol Ecol 9:1699–1710.  https://doi.org/10.1046/j.1365-294x.2000.01084.xCrossRefPubMedGoogle Scholar
  71. Sweetingham M, Yang H, Buirchell BJ, Shea G, Shield I (2006) Resistance to rust in narrow-leafed lupin and development of molecular markers. In: van Santen E, Hill GD (eds) México, where old and new world lupins meet. 11th International Lupin Conference, Guadalajara, Mexico, 2005. International Lupin Association, Canterbury, New Zealand, pp 14–16Google Scholar
  72. Szczepaniak A, Książkiewicz M, Podkowiński J, Czyż KB, Figlerowicz M, Naganowska B (2018) Legume cytosolic and plastid acetyl-coenzyme-A carboxylase genes differ by evolutionary patterns and selection pressure schemes acting before and after whole-genome duplications. Genes 9:563.  https://doi.org/10.3390/genes9110563CrossRefPubMedCentralGoogle Scholar
  73. Święcicki W, Święcicki WK (1995) Domestication and breeding improvement of narrow-leafed lupin (L. angustifolius L.). J Appl Genet 36:155–167Google Scholar
  74. Taylor CM et al (2019) INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ 42:174–187.  https://doi.org/10.1111/pce.13320CrossRefPubMedGoogle Scholar
  75. von Sengbusch R (1942) Süßlupinen und Öllupinen Die Entstehungsgeschichte einiger neuer Kulturpflanzen. Landwirtsch Jahrb 91:719–880Google Scholar
  76. Vos P et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414.  https://doi.org/10.1093/nar/23.21.4407
  77. Williamson PM, Highet AS, Gams W, Sivasithamparam K, Cowling WA (1994) Diaporthe toxica sp. nov., the cause of lupinosis in sheep. Mycol Res 98:1364–1368.  https://doi.org/10.1016/S0953-7562(09)81064-2
  78. Williamson PM, Sivasithamparam K, Cowling WA (1991) Formation of subcuticular coralloid hyphae by Phomopsis leptostromiformis upon latent infection of narrow-leafed lupins. Plant Dis 75:1023–1026.  https://doi.org/10.1094/PD-75-1023CrossRefGoogle Scholar
  79. Wolko B (1995) Markery molekularne w badaniach genetycznych rodzaju Lupinus Hodowla Roślin. Aklimatyzacja i Nasiennictwo 35:3–64Google Scholar
  80. Wu KS, Jones R, Danneberger L, Scolnik PA (1994) Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res 22:3257–3258.  https://doi.org/10.1093/nar/22.15.3257CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wyrwa K, Książkiewicz M, Szczepaniak A, Susek K, Podkowiński J, Naganowska B (2016) Integration of Lupinus angustifolius L. (narrow-leafed lupin) genome maps and comparative mapping within legumes. Chromosome Res 24:355–378.  https://doi.org/10.1007/s10577-016-9526-8
  82. Yang H, Boersma JG, You M, Buirchell BJ, Sweetingham MW (2004) Development and implementation of a sequence-specific PCR marker linked to a gene conferring resistance to anthracnose disease in narrow-leafed lupin (Lupinus angustifolius L.). Mol Breed 14:145–151.  https://doi.org/10.1023/B:MOLB.0000038003.49638.97
  83. Yang H et al (2015a) Application of whole genome re-sequencing data in the development of diagnostic DNA markers tightly linked to a disease-resistance locus for marker-assisted selection in lupin (Lupinus angustifolius). BMC Genomics 16:660.  https://doi.org/10.1186/s12864-015-1878-5
  84. Yang H, Li C, Lam HM, Clements J, Yan G, Zhao S (2015b) Sequencing consolidates molecular markers with plant breeding practice. Theor Appl Genet 128:779–795.  https://doi.org/10.1007/s00122-015-2499-8CrossRefPubMedGoogle Scholar
  85. Yang H et al (2010) Development of sequence-specific PCR markers associated with a polygenic controlled trait for marker-assisted selection using a modified selective genotyping strategy: a case study on anthracnose disease resistance in white lupin (Lupinus albus L.). Mol Breed 25:239–249.  https://doi.org/10.1007/s11032-009-9325-4
  86. Yang H, Renshaw D, Thomas G, Buirchell B, Sweetingham M (2008) A strategy to develop molecular markers applicable to a wide range of crosses for marker assisted selection in plant breeding: a case study on anthracnose disease resistance in lupin (Lupinus angustifolius L.). Mol Breed 21:473–483.  https://doi.org/10.1007/s11032-007-9146-2
  87. Yang H, Shankar M, Buirchell J, Sweetingham W, Caminero C, Smith C (2002) Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin (Lupinus angustifolius L.). Theor Appl Genet 105:265–270.  https://doi.org/10.1007/s00122-002-0925-1
  88. Yang H, Sweetingham MW, Cowling WA, Smith PMC (2001) DNA fingerprinting based on microsatellite-anchored fragment length polymorphisms, and isolation of sequence-specific PCR markers in lupin (Lupinus angustifolius L.). Mol Breed 7:203–209.  https://doi.org/10.1023/A:1011363205557
  89. Yang H, Tao Y, Zheng Z, Li C, Sweetingham MW, Howieson JG (2012) Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genomics 13:318.  https://doi.org/10.1186/1471-2164-13-318CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yang H et al (2013a) Rapid development of molecular markers by next-generation sequencing linked to a gene conferring phomopsis stem blight disease resistance for marker-assisted selection in lupin (Lupinus angustifolius L.) breeding. Theor Appl Genet 126:511–522.  https://doi.org/10.1007/s00122-012-1997-1
  91. Yang H et al (2013b) Draft genome sequence, and a sequence-defined genetic linkage map of the legume crop species Lupinus angustifolius L. PLoS ONE 8:e64799.  https://doi.org/10.1371/journal.pone.0064799
  92. You M, Boersma JG, Buirchell BJ, Sweetingham MW, Siddique KHM, Yang H (2005) A PCR-based molecular marker applicable for marker-assisted selection for anthracnose disease resistance in lupin breeding. Cell Mol Biol Lett 10:123–134PubMedGoogle Scholar
  93. Zhou G et al (2018) Construction of an ultra-high density consensus genetic map, and enhancement of the physical map from genome sequencing in Lupinus angustifolius. Theor Appl Genet 131:209–223.  https://doi.org/10.1007/s00122-017-2997-y

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Plant Genetics Polish Academy of SciencesPoznańPoland
  2. 2.Department of Agriculture and Food Western AustraliaSouth PerthAustralia

Personalised recommendations