Skip to main content

The Repetitive Content in Lupin Genomes

  • Chapter
  • First Online:
The Lupin Genome

Abstract

In this chapter, we present the first detailed evaluation of the repetitive compartment in Lupinus genomes. Low-depth next-generation sequencing (NGS) genomic resources from four closely related smooth-seeded Mediterranean lupin species (L. albus, L. angustifolius, L. luteus, and L. micranthus), exhibiting remarkable differences in genome size and chromosome number have been investigated. The repetitive compartment is composed of a wide diversity of repeats and represents 23–51% of the genomes. This compartment is essentially comprised of transposable elements (43–85%), mainly represented by copia and gypsy LTR retrotransposon families. Among the latter, some prominent families (Tekay, Athila, Maximus-SIRE) significantly contribute to genome size differences among species and in shaping different species-specific repeat profiles, regardless of their chromosome numbers. Also particular lineages of these elements have been differentially and recently amplified within species, such as in L. luteus, L. albus, and L. angustifolius. Moreover, this study highlighted the diversity of tandem repeats in lupin genomes, with minisatellites and satellites mostly being species-specific, whereas microsatellites (SSRs) are ubiquitously distributed. Strikingly, L. angustifolius exhibited a tremendous amount of tandem repeats in its genome (26%), including a noteworthy accumulation of one particular hexamer SSR (15.24% of the genome), which demonstrate that also tandem repeats may greatly contribute to genome obesity and dynamics in lupins. Therefore, differential lineage-specific amplifications of retrotransposons and tandem repeats occurred among lupins. Accordingly, this strongly suggests that different processes and mechanisms regulating amplification, proliferation, and clearance of repeats have differentially operated within the same genus among closely related Mediterranean species over the last ~10–12 Myr. Further extension of such evaluation to various representatives of the lupins diversity and outgroups will provide a better overview of the repetitive compartment and its evolutionary dynamics in the genus. Additionally, the genomic resources generated by this work represent a valuable basis to start building a repeats database specifically dedicated to best understand the genomic landscape, repeats distribution, and localization in lupins. This will facilitate further investigations on the functional and evolutionary impact of repeats on genes of interest, such as those responsive for important agronomical, adaptive, and defense features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainouche A, Bayer RJ, Misset M-T (2004) Molecular phylogeny, diversification and character evolution in Lupinus (Fabaceae) with special attention to Mediterranean and African lupines. Plant Syst Evol 246(3–4):211–222

    CAS  Google Scholar 

  • Aïnouche A, Bayer RJ (1999) Phylogenetic relationships in Lupinus (Fabaceae: Papilionoideae) based on internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA. Am J Bot 86(4):590–607

    Article  PubMed  Google Scholar 

  • Alix K, Heslop-harrison JS (2004) The diversity of retroelements in diploid and allotetraploid Brassica species. Plant Mol Biol 54:895–909

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Atnaf M, Yao N, Martina K, Dagne K, Wegary D, Tesfaye K (2017) Molecular genetic diversity and population structure of Ethiopian white lupin landraces: implications for breeding and conservation. PLoS ONE 12(11):e0188696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ávila Robledillo L, Koblížková A, Novák P, Böttinger K, Vrbová I, Neumann P, Schubert I, Macas J (2018) Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci Rep 8:5838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  PubMed  Google Scholar 

  • Bao W, Kojima KK, Kohany O (2015) Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6

    Google Scholar 

  • Barghini E, Natali L, Cossu RM, Giordani T, Pindo M, Cattonaro F, Scalabrin S, Velasco R, Morgante M, Cavallini A (2014) The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Genome Biol Evol 6:776–791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennett MD (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95:45–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:505–530

    Article  CAS  PubMed  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biémont C, Vieira C (2006) Genetics: Junk DNA as an evolutionary force. Nature 443:521–524

    Article  PubMed  CAS  Google Scholar 

  • Biscotti MA, Olmo E, Heslop-Harrison JS (2015) Repetitive DNA in eukaryotic genomes. Chromosome Res 23(3):415–420

    Article  CAS  PubMed  Google Scholar 

  • Cabello-Hurtado F, Keller J, Ley J, Sanchez-Lucas R, Jorrín-Novo JV, Aïnouche A (2016) Proteomics for exploiting diversity of lupin seed storage proteins and their use as nutraceuticals for health and welfare. J Proteomics 143:57–68

    Article  CAS  PubMed  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421

    Article  CAS  Google Scholar 

  • Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14:100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Charles M, Belcram H, Just J, Huneau C, Viollet A, Couloux A, Segurens B, Carter M, Huteau V, Coriton O et al (2008) Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics 180:1071–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chénais B, Caruso A, Hiard S, Casse N (2012) The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene 509:7–15

    Article  PubMed  CAS  Google Scholar 

  • Chevreux B, Wetter T, Suhai S (1999) Genome sequence assembly using trace signals and additional sequence information. Comput Sci Biol: Proc German Conf Bioinform 99:45–56

    Google Scholar 

  • Chu C, Nielsen R, Wu Y, Antoniewski C (2016) REPdenovo: Inferring de novo repeat motifs from short sequence reads. PLOS ONE 11 (3):e0150719

    Google Scholar 

  • Conterato IF, Schifino-Wittmann MT (2006) New chromosome numbers, meiotic behaviour and pollen fertility in American taxa of Lupinus (Leguminosae): contributions to taxonomic and evolutionary studies. Bot J Linn Soc 150:229–240

    Article  Google Scholar 

  • Devos KM (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51A:127–128

    Article  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  CAS  PubMed  Google Scholar 

  • Eastwood RJ, Drummond CS, Schifino-Wittmann MT, Hughes CE (2008) Diversity and evolutionary history of lupins–insights from new phylogenies. In: Lupins for health and wealth: 12th international lupin conference, vol 10

    Google Scholar 

  • Estep MC, DeBarry JD, Bennetzen JL (2013) The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution. Heredity 110:194–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferree PM, Barbash DA (2009) Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 7:e1000234 (MAF Noor, Ed.)

    Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1–copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flutre T, Duprat E, Feuillet C, Quesneville H (2011) Considering transposable element diversification in de novo annotation approaches. PLoS ONE 6 (Y Xu, Ed.)

    Google Scholar 

  • Fry K, Salser W (1977) Nucleotide sequences of HS-a satellite DNA from Kangaroo Rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 12:1069–1084

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Ramos MA (2015) Satellite DNA in plants: more than just rubbish. Cytogenet Genome Res 146:153–170

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Ramos M (2017) Satellite DNA: an evolving topic. Genes 8:230

    Article  PubMed Central  CAS  Google Scholar 

  • Gladstones JS, Atkins CA, Hamblin J (eds) (1998) Lupins as crop plants: biology, production, and utilization. CAB International, Wallingford, Oxon, UK ; New York, NY, USA

    Google Scholar 

  • Grandbastien M-A, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa A-PP, Le QH, Melayah D, Petit M, Poncet C et al (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res 110:229–241

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR (2005) The C-value Enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot 95:133–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W (2006) Smallest angiosperm genomes found in lentibulariaceae, with chromosomes of bacterial size. Plant Biol 8:770–777

    Article  CAS  PubMed  Google Scholar 

  • Hane JK, Ming Y, Kamphuis LG, Nelson MN, Garg G, Atkins CA, Bayer PE, Bravo A, Bringans S, Cannon S et al (2017) A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution. Plant Biotechnol J 15:318–330

    Article  CAS  PubMed  Google Scholar 

  • Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins JS, Proulx SR, Rapp RA, Wendel JF (2009) Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci 106:17811–17816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heitkam T, Petrasch S, Zakrzewski F, Kögler A, Wenke T, Wanke S, Schmidt T (2015) Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe’s oldest Camellia japonica. Chromosome Res 23:791–806

    Article  CAS  PubMed  Google Scholar 

  • Hoang DT, Chernomor O, von Haeseler A, Quang Minh B, Sy VL (2017) Ufboot 2: improving the ultrafast bootstrap approximation. Mol Biol Evol 32:518–522

    Google Scholar 

  • Hosaka A, Kakutani T (2018) Transposable elements, genome evolution and transgenerational epigenetic variation. Curr Opin Genet Dev 49:43–48

    Article  CAS  PubMed  Google Scholar 

  • Hřibová E, Neumann P, Matsumoto T, Roux N, Macas J, Doležel J (2010) Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol 10

    Google Scholar 

  • Hu TT, Pattyn P, Bakker EG, Cao J, Cheng J-F, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughes C, Eastwood R (2006) Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci 103 (27):10334–10339. https://doi.org/10.1073/pnas.0601928103

  • Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Feschotte C, Zhang X, Wessler SR (2004) Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol 7:115–119

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci 97:6603–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamphuis LG, Hane JK, Nelson MN, Gao L, Atkins CA, Singh KB (2015) Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers. Plant Biotechnol J 13:14–25

    Article  CAS  PubMed  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller J, Imperial J, Ruiz-Argüeso T, Privet K, Lima O, Michon-Coudouel S, Biget M, Salmon A, Aïnouche A, Cabello-Hurtado F (2018) RNA sequencing and analysis of three Lupinus nodulomes provide new insights into specific host-symbiont relationships with compatible and incompatible Bradyrhizobium strains. Plant Sci 266:102–116

    Article  CAS  PubMed  Google Scholar 

  • Kroc M, Koczyk G, Święcicki W, Kilian A, Nelson MN (2014) New evidence of ancestral polyploidy in the Genistoid legume Lupinus angustifolius L. (narrow-leafed lupin). Theor Appl Genet 127:1237–1249

    Article  PubMed  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  CAS  PubMed  Google Scholar 

  • Lerat E (2010) Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity 104:520–533

    Article  CAS  PubMed  Google Scholar 

  • Levinson G, Gutman G (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    CAS  PubMed  Google Scholar 

  • Li Y-C (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  CAS  PubMed  Google Scholar 

  • Lim KG, Kwoh CK, Hsu LY, Wirawan A (2013) Review of tandem repeat search tools: a systematic approach to evaluating algorithmic performance. Brief Bioinform 14:67–81

    Article  PubMed  Google Scholar 

  • Lippman Z, Gendrel A-V, Black M, Vaughn MW, Dedhia N, Richard McCombie W, Lavine K, Mittal V, May B, Kasschau KD et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  CAS  PubMed  Google Scholar 

  • Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66

    Article  CAS  PubMed  Google Scholar 

  • Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14:49–61

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wendel JF (2000) Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome 43:874–880

    Article  CAS  PubMed  Google Scholar 

  • Lönnig W-E, Saedler H (1997) Plant transposons: contributors to evolution? Gene 205:245–253

    Article  PubMed  Google Scholar 

  • Lower SS, McGurk MP, Clark AG, Barbash DA (2018) Satellite DNA evolution: old ideas, new approaches. Curr Opin Genet Dev 49:70–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch VJ, Nnamani MC, Kapusta A, Brayer K, Plaza SL, Mazur EC, Emera D, Sheikh SZ, Grützner F, Bauersachs S et al (2015) Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep 10:551–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci 101:12404–12410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macas J, Neumann P, Navrátilová A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8

    Google Scholar 

  • Mahé F (2009) Phylogénie, éléments transposables et évolution de la taille des génomes chez les lupins

    Google Scholar 

  • Mahé F, Pascual H, Coriton O, Huteau V, Navarro Perris A, Misset M-T, Aïnouche A (2011) New data and phylogenetic placement of the enigmatic Old World lupin: Lupinus mariae-josephi H Pascual. Genet Resour Crop Evol 58:101–114

    Article  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClintock B (1948) Mutable loci in maize. Carnegie Institution of Washington Year Book, 47, 155–169

    Google Scholar 

  • Metzgar D, Bytof J, Wills C (2000) Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res 9

    Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Naganowska B (2003) Nuclear DNA content variation and species relationships in the genus Lupinus (Fabaceae). Ann Bot 92:349–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naganowska B, Wolko B, Śliwińska E, Kaczmarek Z, Schifino-Wittmann MT (2005) 2C DNA variation and relationships among New World species of the genus Lupinus (Fabaceae). Plant Syst Evol 256:147–157

    Article  CAS  Google Scholar 

  • Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  • Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform 11

    Google Scholar 

  • Novák P, Ávila Robledillo L, Koblížková A, Vrbová I, Neumann P, Macas J (2017) TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res 45

    Google Scholar 

  • Novák P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D et al (2013) An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161:705–724

    Article  PubMed  CAS  Google Scholar 

  • Oliveira EJ, Pádua JG, Zucchi MI, Vencovsky R, Vieira MLC (2006) Origin, evolution and genome distribution of microsatellites. Genet Mol Biol 29:294–307

    Article  CAS  Google Scholar 

  • Oliver KR, McComb JA, Greene WK (2013) Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 5:1886–1901

    Article  PubMed  PubMed Central  Google Scholar 

  • Orgel LE, Crick FH, Sapienza C (1980) Selfish DNA. Nature 288:645–646

    Article  CAS  PubMed  Google Scholar 

  • Parra-González LB, Aravena-Abarzúa GA, Navarro-Navarro CS, Udall J, Maughan J, Peterson LM, Salvo-Garrido HE, Maureira-Butler IJ (2012) Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies. BMC Genomics 13:425

    Google Scholar 

  • Pellicer J, Hidalgo O, Dodsworth S, Leitch I (2018) Genome size diversity and its impact on the evolution of land plants. Genes 9:88

    Article  PubMed Central  CAS  Google Scholar 

  • Petes TD (1980) Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell 19:765–774

    Article  CAS  PubMed  Google Scholar 

  • Piednoël M, Carrete-Vega G, Renner SS (2013) Characterization of the LTR retrotransposon repertoire of a plant clade of six diploid and one tetraploid species. Plant J 75:699–709

    Article  PubMed  CAS  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA et al (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plohl M, Mestrovic N, Mravinac B (2012) Satellite DNA evolution. In: Garrido-Ramos MA (ed) Genome dynamics. S. KARGER AG, Basel, pp 126–152

    Google Scholar 

  • Priyam A, Woodcroft BJ, Rai V, Munagala A, Moghul I, Ter F, Gibbins MA, Moon H, Leonard G, Rumpf W, Wurm Y (2015) Sequenceserver: a modern graphical user interface for custom BLAST databases. biorxiv. https://doi.org/10.1101/033142

  • Quesneville H, Bergman CM, Andrieu O, Autard D, Nouaud D, Ashburner M, Anxolabehere D (2005) Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol 1:166–175

    Article  CAS  PubMed  Google Scholar 

  • Raman R, Cowley RB, Raman HD, Luckett DJ (2014) Analyses using SSR and DArT molecular markers reveal that Ethiopian accessions of white lupin (Lupinus albus L.) represent a unique gene pool. Open J Genet 4:87–98

    Article  Google Scholar 

  • Renny-Byfield S, Wendel JF (2014) Doubling down on genomes: polyploidy and crop plants. Am J Bot 101:1711–1725

    Article  PubMed  Google Scholar 

  • Renny-Byfield S, Chester M, Kovarik A, Le Comber SC, Grandbastien M-A, Deloger M, Nichols RA, Macas J, Novak P, Chase MW et al (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843–2854

    Article  CAS  PubMed  Google Scholar 

  • Renny-Byfield S, Gallagher JP, Grover CE, Szadkowski E, Page JT, Udall JA, Wang X, Paterson AH, Wendel JF (2014) Ancient gene duplicates in Gossypium (Cotton) exhibit near-complete expression divergence. Genome Biol Evol 6:559–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Ruano FJ, López-León MD, Cabrero J, Camacho JPM (2016) High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci Rep 6

    Google Scholar 

  • Satović E, Vojvoda Zeljko T, Plohl M (2018) Characteristics and evolution of satellite DNA sequences in bivalve mollusks. Eur Zool J 85:94–103

    Article  CAS  Google Scholar 

  • Schmuths H (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 93:317–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sequencing Project IRG (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Shi J, Huang S, Fu D, Yu J, Wang X, Hua W, Liu S, Liu G, Wang H (2013) Evolutionary dynamics of microsatellite distribution in plants: insight from the comparison of sequenced Brassica, Arabidopsis and other angiosperm species. PLoS ONE 8:e59988 (BA Vinatzer, Ed.)

    Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J et al (2014) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7:539–539

    Article  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  • Staton SE, Burke JM (2015) Transposome: Annotation of transposable element families from unassembled sequence reads. Bioinform, https://doi.org/10.1093/bioinformatics/btv05

  • Streelman JT, Kocher TD (2002) Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiol Genomics 9:1–4

    Article  CAS  PubMed  Google Scholar 

  • Thomas CA (1971) The genetic organization of chromosomes. Annu Rev Genet 5:237–256

    Article  CAS  PubMed  Google Scholar 

  • Toth G (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Usai G, Mascagni F, Natali L, Giordani T, Cavallini A (2017) Comparative genome-wide analysis of repetitive DNA in the genus Populus L. Tree Genet Genomes 13:96

    Article  Google Scholar 

  • Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:17

    Article  Google Scholar 

  • Vu GTH, Schmutzer T, Bull F, Cao HX, Fuchs J, Tran TD, Jovtchev G, Pistrick K, Stein N, Pecinka A et al (2015) Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus. Plant Genome 8(3):1–14

    Article  CAS  Google Scholar 

  • Wajid B, Serpedin E (2012) Review of general algorithmic features for genome assemblers for next generation sequencers. Genomics Proteomics Bioinform 10:58–73

    Article  Google Scholar 

  • Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biol 17:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wessler SR (2006) Transposable elements and the evolution of eukaryotic genomes. Proc Natl Acad Sci 103:17600–17601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González RH, De Oliveira R, Mayer KFX, Paux E, Choulet F (2018) Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol 19(1):103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolko B, Weeden NF (1989) Estimation of Lupinus genome polyploidy on the basis of isozymic loci number. Genet Pol 30:165–171

    Google Scholar 

  • Wu DD, Ruban A, Fuchs J, Macas J, Novak P, Vaio M, Zhou YH, Houben A (2019) Nondisjunction and unequal spindle organization accompany the drive of Aegilops speltoides B chromosomes. New Phytol 223:1340–1352

    Article  CAS  PubMed  Google Scholar 

  • Yaakov B, Kashkush K (2012) Mobilization of Stowaway-like MITEs in newly formed allohexaploid wheat species. Plant Mol Biol 80:419–427

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to INEE-CNRS (France) and to the University of Rennes for their support to this work as part of the research program of the International Associated Laboratory “Ecological Genomics of Polyploidy” involving the University of Rennes (France) and the Iowa State University (Ames, USA). We thank Prof. Barbara Naganowska (Institut of Plant Genetics/PAS, Poznan, Poland) for kindly providing L. angustifolius seeds (IPG2 accession).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Aïnouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aïnouche, A. et al. (2020). The Repetitive Content in Lupin Genomes. In: Singh, K., Kamphuis, L., Nelson, M. (eds) The Lupin Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-21270-4_12

Download citation

Publish with us

Policies and ethics