Skip to main content

Genomics of Yellow Lupin (Lupinus luteus L.)

  • Chapter
  • First Online:
The Lupin Genome

Abstract

Yellow lupin (Lupinus luteus L.) is a minor annual legume crop valued for its productivity in highly infertile, acidic soils and for its very high protein seeds. Yellow lupin belongs to the ‘Old World’ group of lupin species and is closely related to narrow-leafed lupin. Yellow lupin shares similar climatic adaptation to narrow-leafed lupin over which it offers some additional advantages such as greater water-logging tolerance and disease resistance. Despite its promise, yellow lupin is grown only as a niche crop in Australia, Europe and South America, and has attracted very limited breeding attention to date. Major constraints to the wider uptake of yellow lupin as a crop include lack of diversity in the domesticated gene pool and a historic focus on adaptation to a limited range of environments. Current varieties are also sensitive to some abiotic stresses (notably drought, extreme temperatures, salinity and alkalinity) and to sap-sucking insects such as aphids. Good genetic resources are available for yellow lupin including extensive seed collections that capture much of the species-wide diversity and three recombinant inbred line populations. Until recently, yellow lupin has lagged behind its well-resourced sister species narrow-leafed lupin in terms of genomic resources but is now catching up. Transcriptomic datasets have been used to generate molecular markers and to investigate the causes of flower and pod abortion. The first genetic map for yellow lupin was recently released, which is being used to investigate phenology, domestication traits and productivity under water-limiting conditions. Transgenesis methods have been developed for yellow lupin, a key enabling technology for future genome editing activities. Efforts are underway to develop a high-quality reference genome sequence for yellow lupin. These developing resources will help researchers acquire knowledge and molecular tools to equip lupin breeders to overcome the restraints on broader adoption of this promising legume crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari KN, Edwards OR, Wang S, Ridsdill-Smith TJ, Buirchell B (2012) The role of alkaloids in conferring aphid resistance in yellow lupin (Lupinus luteus L.). Crop Pasture Sci 63:444–451

    Article  CAS  Google Scholar 

  • Baird N, Etter P, Atwood T, Currey M, Shiver A, Lewis Z, Selker E, Cresko W, Johnson E (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berger JD, Adhikari K, Wilkinson D, Buirchel B, Sweetingham M (2008) Ecogeography of the Old World lupins. 1. Ecotypic variation in yellow lupin (Lupinus luteus L.). Aust J Agric Res 59:691–701

    Article  Google Scholar 

  • Berger JD, Buirchell B, Luckett D, Nelson M (2012) Domestication bottlenecks limit genetic diversity and constrain adaptation in narrow-leafed lupin (Lupinus angustifolius L.). Theor Appl Genet 124:637–652

    Article  CAS  PubMed  Google Scholar 

  • Berger JD, John C, Nelson M, Kamphuis L, Singh K, Buirchell B (2013) The essential role of genetic resources in narrow-leafed lupin improvement. Crop Pasture Sci 64:361–373

    Article  CAS  Google Scholar 

  • Berger JD, Ludwig C (2014) Contrasting adaptive strategies to terminal drought-stress gradients in Mediterranean legumes: phenology, productivity, and water relations in wild and domesticated Lupinus luteus L. J Exp Bot 65:6219–6229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlandier F, Sweetingham M (2003) Aphid feeding damage causes large losses in susceptible lupin cultivars. Aust J Exp Agric 43:1357–1362

    Article  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Chaves M, Maroco J, Pereira J (2003) Understanding plant responses to drought; from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  PubMed  Google Scholar 

  • Clements J, Chong L, Quealy J, Prilyuk L, Yang H, Francis G, Buirchell B (2009) Interspecific hybrids between Lupinus angustifolius and L. luteus–an avenue to increase the value of narrow-leafed lupin in Australia. SABRAO J Breed Genet 41

    Google Scholar 

  • Cowling W, Huyghe C, Swiecicki W, Gladstones J, Atkins C, Hamblin J (1998) Lupin breeding In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, UK

    Google Scholar 

  • Cowling WA, Buirchell BJ, Falk DE (2009) A model for introducing novel genetic diversity from wild relatives into elite crop populations. Crop Pasture Sci 60:1009–1015

    Article  CAS  Google Scholar 

  • Drummond C, Eastwood R, Miotto S, Hughes C (2012) Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Syst Biol 61:443–460

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards O, Ridsdill-Smith T, Berlandier F (2003) Aphids do not avoid resistance in Australian lupin (Lupinus angustifolius, L. luteus) varieties. Bull Entomol Res 93:403–411

    Article  CAS  PubMed  Google Scholar 

  • Foley RC, Jimenez-Lopez JC, Kamphuis LG, Hane JK, Melser S, Singh KB (2015) Analysis of conglutin seed storage proteins across lupin species using transcriptomic, protein and comparative genomic approaches. BMC Plant Biol 15:106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • French R, Sweetingham M, Shea G (2001) A comparison of the adaptation of yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) to acid sandplain soils in low rainfall agricultural areas of Western Australia. Crop Pasture Sci 52:945–954

    Article  Google Scholar 

  • Gladstones JS (1970) Lupins as crop plants. Field Crop Abstr 23:123–148

    Google Scholar 

  • Gladstones J (1998) Distribution, origin, taxonomy, history and importance. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, UK

    Google Scholar 

  • Glazinska P, Wojciechowski W, Kulasek M, Glinkowski W, Marciniak K, Klajn N, Kesy J, Kopcewicz J (2017) De novo transcriptome profiling of flowers, flower pedicels and pods of Lupinus luteus (yellow lupine) reveals complex expression changes during organ abscission. Front Plant Sci 8:641

    Google Scholar 

  • Glencross B, Palta J, Berger J (2008) Harvesting the benefits of lupin meals in aquaculture feeds. In: Lupins for health and wealth. Proceedings of the 12th international lupin conference, Fremantle, Western Australia. International Lupin Association, 14–18 Sept 2008

    Google Scholar 

  • Hackbarth J (1951) Beobachtungen über den Entwicklungsrhythmus bei Lupinus luteus. Z für Pflanzenzücht 30:198–209

    Google Scholar 

  • Hackbarth J (1955) Die oekologischen Ansprueche der Lupinenarten. I. Anbau zur Koernergewinnung. Z für Pflanzenzücht 35:149–178

    Google Scholar 

  • Hane J, Ming Y, Kamphuis L, Nelson M, Garg G, Atkins C, Bayer P, Bravo A, Bringans S, Cannon S et al (2017) A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution. Plant Biotechnol J 15:318–330

    Article  CAS  PubMed  Google Scholar 

  • Hondelmann W (1984) The lupin—ancient and modern crop plant. Theor Appl Genet 68:1–9

    Article  CAS  PubMed  Google Scholar 

  • Iqbal MM (2019) Genetics of adaptation of yellow lupin to dryland conditions. School of Agricultural and Environment. The University of Western Australia, Perth

    Google Scholar 

  • Iqbal M, Huynh M, Udall JA, Kilian A, Adhikari K, Berger J, Erskine W, Nelson MN (2019) The first genetic map for yellow lupin enables genetic dissection of adaptation traits in an orphan grain legume crop. BMC Genomics 20:68

    Google Scholar 

  • Jones RAC, Latham LJ (1996) Natural resistance to cucumber mosaic virus in lupin species. Ann Appl Biol 129:523–542

    Article  Google Scholar 

  • Kordan B, Stec K, Słomiński P, Laszczak-Dawid A, Wróblewska-Kurdyk A, Gabryś B (2018) Antixenosis potential in pulses against the pea aphid (Hemiptera: Aphididae). J Econ Entomol 112:465–474

    Article  Google Scholar 

  • Kroc M, Koczyk G, Swiecicki W, Kilian A, Nelson M (2014) New evidence of ancestral polyploidy in the Genistoid legume Lupinus angustifolius L.(narrow-leafed lupin). Theor Appl Genet 127:1237–1249

    Google Scholar 

  • Lambers H, Clements J, Nelson M (2013) How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). Am J Bot 100:263–288

    Article  CAS  PubMed  Google Scholar 

  • Legume Phylogeny Working Group (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66:44–77

    Article  Google Scholar 

  • Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Van Eck J, Lippman ZB (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants 4:766–770

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wylie S, Jones M (2000) Transgenic yellow lupin (Lupinus luteus). Plant Cell Rep 19:634–637

    Article  CAS  PubMed  Google Scholar 

  • Martin GE, Rousseau-Gueutin M, Cordonnier S, Lima O, Michon-Coudouel S, Naquin D, de Carvalho JF, Aïnouche M, Salmon A, Aïnouche A (2014) The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family. Ann Bot 113:1197–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mousavi-Derazmahalleh M, Bayer PE, Nevado B, Hurgobin B, Filatov D, Kilian A, Kamphuis LG, Singh KB, Berger JD, Hane JK, Edwards D, Erskine W, Nelson MN (2018a) Exploring the genetic and adaptive diversity of a pan-Mediterranean crop wild relative: narrow-leafed lupin. Theor Appl Genet 131:887–901

    Article  PubMed  PubMed Central  Google Scholar 

  • Mousavi-Derazmahalleh M, Nevado B, Bayer PE, Filatov D, Hane JK, Edwards D, Erskine W, Nelson MN (2018b) The western Mediterranean region provided the founder population of domesticated narrow-leafed lupin. Theor Appl Genet 131:2543–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naganowska B, Wolko B, Sliwinska E, Kaczmarek Z (2003) Nuclear DNA content variation and species relationships in the genus Lupinus (Fabaceae). Ann Bot 92:349–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson MN, Książkiewicz M, Rychel S, Besharat N, Taylor C, Wyrwa K, Jost R, Erskine W, Cowling W, Berger J, Batley J (2017) The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T (FT) homologue. New Phytol 213:220–232

    Article  CAS  PubMed  Google Scholar 

  • Nelson M, Phan H, Ellwood S, Moolhuijzen P, Hane J, Williams A, O'Lone C, Fosu-Nyarko J, Scobie M, Cakir M, Jones M, Bellgard M, Ksiazkiewicz M, Wolko B, Barker S, Oliver R, Cowling W (2006) The first gene-based map of Lupinus angustifolius L.—location of domestication genes and conserved synteny with Medicago truncatula. Theor Appl Genet 113:225–238

    Article  CAS  PubMed  Google Scholar 

  • Nelson MN, Moolhuijzen P, Boersma J, Chudy M, Lesniewska K, Bellgard M, Oliver R, Swiecicki W, Wolko B, Cowling W (2010) Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus. DNA Res 17:73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura T, Hernández A, Aizawa T, Ogihara J, Sunairi M, Alcaino J, Salvo-Garrido H, Maureira-Butler IJ (2013) Identification of a low digestibility δ-Conglutin in yellow lupin (Lupinus luteus L.) seed meal for atlantic salmon (Salmo salar L.) by coupling 2D-PAGE and mass spectrometry. PloS One 8:e80369

    Google Scholar 

  • Ogura T, Ogihara J, Sunairi M, Takeishi H, Aizawa T, Olivos-Trujillo MR, Maureira-Butler IJ, Salvo-Garrido HE (2014) Proteomic characterization of seeds from yellow lupin (Lupinus luteus L.). Proteomics 14:1543–1546

    Article  CAS  PubMed  Google Scholar 

  • Osorio CE, Udall JA, Salvo-Garrido H, Maureira-Butler IJ (2018a) Development and characterization of InDel markers for Lupinus luteus L. (Fabaceae) and cross-species amplification in other lupin species. Electron J Biotechnol 31:44–47

    Article  CAS  Google Scholar 

  • Osorio CE, Amiard VS, Aravena-Calvo J, Udall JA, Doyle JJ, Maureira-Butler IJ (2018b) Chromatographic fingerprinting of Lupinus luteus L. (Leguminosae) main secondary metabolites: a case of domestication affecting crop variability. Genet Resour Crop Evol 65:1281–1291

    Article  CAS  Google Scholar 

  • Parra-González L, Aravena-Abarzúa G, Navarro-Navarro C, Udall J, Maughan J, Peterson L, Salvo-Garrido H, Maureira-Butler I (2012) Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies. BMC Genomics 13:1

    Google Scholar 

  • Phan H, Ellwood S, Adhikari K, Nelson M, Oliver R (2007) The first genetic and comparative map of white lupin (Lupinus albus L.): identification of QTLs for anthracnose resistance and flowering time, and a locus for alkaloid content. DNA Res 14:59–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piornos JA, Burgos-Díaz C, Ogura T, Morales E, Rubilar M, Maureira-Butler I, Salvo-Garrido H (2015) Functional and physicochemical properties of a protein isolate from AluProt-CGNA: a novel protein-rich lupin variety (Lupinus luteus). Food Res Int 76:719–724

    Article  CAS  PubMed  Google Scholar 

  • Robertson NL, Coyne CJ (2009) First report of bean yellow mosaic virus from diseased Lupinus luteus in Eastern Washington. Plant Dis 93:319–319

    Article  CAS  PubMed  Google Scholar 

  • Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D, Kilian A (2011) Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc 5:P54

    Article  PubMed Central  Google Scholar 

  • Stinchcombe J, Hoekstra H (2008) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100:158–170

    Article  CAS  PubMed  Google Scholar 

  • Stoddard F, Balko C, Erskine W, Khan H, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186

    Article  Google Scholar 

  • Susek K, Bielski WK, Hasterok R, Naganowska B, Wolko B (2016) A first glimpse of wild lupin karyotype variation as revealed by comparative cytogenetic mapping. Front Plant Sci 7:1152

    Article  PubMed  PubMed Central  Google Scholar 

  • Susek K, Bielski W, Czyz KB, Hasterok R, Jackson SA, Wolko B, Naganowska B (2019) Impact of chromosomal rearrangements on the interpretation of lupin karyotype evolution. Genes 10:259

    Article  CAS  PubMed Central  Google Scholar 

  • Taylor CM, Kamphuis LG, Zhang W, Garg G, Berger JD, Mousavi-Derazmahalleh M, Bayer PE, Edwards D, Singh KB, Cowling WA (2019) INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ 42:174–187

    Google Scholar 

  • Troll H (1940a) Saatzeitversuche mit Zucht-und Landsorten sowie Wildformen von L. luteus und L. angustifolius. Pflanzenbau 16:403–430

    Google Scholar 

  • Troll H (1940b) Vegetationsbeobachtungen an Lupinen in verschiedenen geographischen Breiten. Der Zücht 12:129–139

    Article  Google Scholar 

  • Varshney R, Lekha P, Junichi K, Pooran M, Krishnamurthy L, Dave H (2011) Genomics and physiological approaches for root trait breeding to improve drought tolerance in chickpea (Cicer arietinum L.). In: Root genomics. Springer, Berlin, Germany

    Google Scholar 

  • Wolko B, Clements JC, Naganowska B, Nelson MN, Yang H (2011) Lupinus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Heidelberg, Germany

    Google Scholar 

  • Zehnder GW, Nichols AJ, Edwards OR, Ridsdill-Smith TJ (2001) Electronically monitored cowpea aphid feeding behavior on resistant and susceptible lupins. Entomol Exp Appl 98:259–269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew N. Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iqbal, M.M., Erskine, W., Berger, J.D., Udall, J.A., Nelson, M.N. (2020). Genomics of Yellow Lupin (Lupinus luteus L.). In: Singh, K., Kamphuis, L., Nelson, M. (eds) The Lupin Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-21270-4_11

Download citation

Publish with us

Policies and ethics