Advertisement

Genomics of Yellow Lupin (Lupinus luteus L.)

Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Yellow lupin (Lupinus luteus L.) is a minor annual legume crop valued for its productivity in highly infertile, acidic soils and for its very high protein seeds. Yellow lupin belongs to the ‘Old World’ group of lupin species and is closely related to narrow-leafed lupin. Yellow lupin shares similar climatic adaptation to narrow-leafed lupin over which it offers some additional advantages such as greater water-logging tolerance and disease resistance. Despite its promise, yellow lupin is grown only as a niche crop in Australia, Europe and South America, and has attracted very limited breeding attention to date. Major constraints to the wider uptake of yellow lupin as a crop include lack of diversity in the domesticated gene pool and a historic focus on adaptation to a limited range of environments. Current varieties are also sensitive to some abiotic stresses (notably drought, extreme temperatures, salinity and alkalinity) and to sap-sucking insects such as aphids. Good genetic resources are available for yellow lupin including extensive seed collections that capture much of the species-wide diversity and three recombinant inbred line populations. Until recently, yellow lupin has lagged behind its well-resourced sister species narrow-leafed lupin in terms of genomic resources but is now catching up. Transcriptomic datasets have been used to generate molecular markers and to investigate the causes of flower and pod abortion. The first genetic map for yellow lupin was recently released, which is being used to investigate phenology, domestication traits and productivity under water-limiting conditions. Transgenesis methods have been developed for yellow lupin, a key enabling technology for future genome editing activities. Efforts are underway to develop a high-quality reference genome sequence for yellow lupin. These developing resources will help researchers acquire knowledge and molecular tools to equip lupin breeders to overcome the restraints on broader adoption of this promising legume crop.

References

  1. Adhikari KN, Edwards OR, Wang S, Ridsdill-Smith TJ, Buirchell B (2012) The role of alkaloids in conferring aphid resistance in yellow lupin (Lupinus luteus L.). Crop Pasture Sci 63:444–451Google Scholar
  2. Baird N, Etter P, Atwood T, Currey M, Shiver A, Lewis Z, Selker E, Cresko W, Johnson E (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376PubMedPubMedCentralGoogle Scholar
  3. Berger JD, Adhikari K, Wilkinson D, Buirchel B, Sweetingham M (2008) Ecogeography of the Old World lupins. 1. Ecotypic variation in yellow lupin (Lupinus luteus L.). Aust J Agric Res 59:691–701Google Scholar
  4. Berger JD, Buirchell B, Luckett D, Nelson M (2012) Domestication bottlenecks limit genetic diversity and constrain adaptation in narrow-leafed lupin (Lupinus angustifolius L.). Theor Appl Genet 124:637–652PubMedPubMedCentralGoogle Scholar
  5. Berger JD, John C, Nelson M, Kamphuis L, Singh K, Buirchell B (2013) The essential role of genetic resources in narrow-leafed lupin improvement. Crop Pasture Sci 64:361–373Google Scholar
  6. Berger JD, Ludwig C (2014) Contrasting adaptive strategies to terminal drought-stress gradients in Mediterranean legumes: phenology, productivity, and water relations in wild and domesticated Lupinus luteus L. J Exp Bot 65:6219–6229PubMedPubMedCentralGoogle Scholar
  7. Berlandier F, Sweetingham M (2003) Aphid feeding damage causes large losses in susceptible lupin cultivars. Aust J Exp Agric 43:1357–1362Google Scholar
  8. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52PubMedGoogle Scholar
  9. Chaves M, Maroco J, Pereira J (2003) Understanding plant responses to drought; from genes to the whole plant. Funct Plant Biol 30:239–264Google Scholar
  10. Clements J, Chong L, Quealy J, Prilyuk L, Yang H, Francis G, Buirchell B (2009) Interspecific hybrids between Lupinus angustifolius and L. luteus–an avenue to increase the value of narrow-leafed lupin in Australia. SABRAO J Breed Genet 41Google Scholar
  11. Cowling W, Huyghe C, Swiecicki W, Gladstones J, Atkins C, Hamblin J (1998) Lupin breeding In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, UKGoogle Scholar
  12. Cowling WA, Buirchell BJ, Falk DE (2009) A model for introducing novel genetic diversity from wild relatives into elite crop populations. Crop Pasture Sci 60:1009–1015Google Scholar
  13. Drummond C, Eastwood R, Miotto S, Hughes C (2012) Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Syst Biol 61:443–460PubMedPubMedCentralGoogle Scholar
  14. Edwards O, Ridsdill-Smith T, Berlandier F (2003) Aphids do not avoid resistance in Australian lupin (Lupinus angustifolius, L. luteus) varieties. Bull Entomol Res 93:403–411PubMedGoogle Scholar
  15. Foley RC, Jimenez-Lopez JC, Kamphuis LG, Hane JK, Melser S, Singh KB (2015) Analysis of conglutin seed storage proteins across lupin species using transcriptomic, protein and comparative genomic approaches. BMC Plant Biol 15:106PubMedPubMedCentralGoogle Scholar
  16. French R, Sweetingham M, Shea G (2001) A comparison of the adaptation of yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) to acid sandplain soils in low rainfall agricultural areas of Western Australia. Crop Pasture Sci 52:945–954Google Scholar
  17. Gladstones JS (1970) Lupins as crop plants. Field Crop Abstr 23:123–148Google Scholar
  18. Gladstones J (1998) Distribution, origin, taxonomy, history and importance. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, UKGoogle Scholar
  19. Glazinska P, Wojciechowski W, Kulasek M, Glinkowski W, Marciniak K, Klajn N, Kesy J, Kopcewicz J (2017) De novo transcriptome profiling of flowers, flower pedicels and pods of Lupinus luteus (yellow lupine) reveals complex expression changes during organ abscission. Front Plant Sci 8:641Google Scholar
  20. Glencross B, Palta J, Berger J (2008) Harvesting the benefits of lupin meals in aquaculture feeds. In: Lupins for health and wealth. Proceedings of the 12th international lupin conference, Fremantle, Western Australia. International Lupin Association, 14–18 Sept 2008Google Scholar
  21. Hackbarth J (1951) Beobachtungen über den Entwicklungsrhythmus bei Lupinus luteus. Z für Pflanzenzücht 30:198–209Google Scholar
  22. Hackbarth J (1955) Die oekologischen Ansprueche der Lupinenarten. I. Anbau zur Koernergewinnung. Z für Pflanzenzücht 35:149–178Google Scholar
  23. Hane J, Ming Y, Kamphuis L, Nelson M, Garg G, Atkins C, Bayer P, Bravo A, Bringans S, Cannon S et al (2017) A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution. Plant Biotechnol J 15:318–330PubMedGoogle Scholar
  24. Hondelmann W (1984) The lupin—ancient and modern crop plant. Theor Appl Genet 68:1–9PubMedGoogle Scholar
  25. Iqbal MM (2019) Genetics of adaptation of yellow lupin to dryland conditions. School of Agricultural and Environment. The University of Western Australia, PerthGoogle Scholar
  26. Iqbal M, Huynh M, Udall JA, Kilian A, Adhikari K, Berger J, Erskine W, Nelson MN (2019) The first genetic map for yellow lupin enables genetic dissection of adaptation traits in an orphan grain legume crop. BMC Genomics 20:68Google Scholar
  27. Jones RAC, Latham LJ (1996) Natural resistance to cucumber mosaic virus in lupin species. Ann Appl Biol 129:523–542Google Scholar
  28. Kordan B, Stec K, Słomiński P, Laszczak-Dawid A, Wróblewska-Kurdyk A, Gabryś B (2018) Antixenosis potential in pulses against the pea aphid (Hemiptera: Aphididae). J Econ Entomol 112:465–474Google Scholar
  29. Kroc M, Koczyk G, Swiecicki W, Kilian A, Nelson M (2014) New evidence of ancestral polyploidy in the Genistoid legume Lupinus angustifolius L.(narrow-leafed lupin). Theor Appl Genet 127:1237–1249Google Scholar
  30. Lambers H, Clements J, Nelson M (2013) How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). Am J Bot 100:263–288PubMedGoogle Scholar
  31. Legume Phylogeny Working Group (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66:44–77Google Scholar
  32. Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Van Eck J, Lippman ZB (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants 4:766–770PubMedGoogle Scholar
  33. Li H, Wylie S, Jones M (2000) Transgenic yellow lupin (Lupinus luteus). Plant Cell Rep 19:634–637PubMedGoogle Scholar
  34. Martin GE, Rousseau-Gueutin M, Cordonnier S, Lima O, Michon-Coudouel S, Naquin D, de Carvalho JF, Aïnouche M, Salmon A, Aïnouche A (2014) The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family. Ann Bot 113:1197–1210PubMedPubMedCentralGoogle Scholar
  35. Mousavi-Derazmahalleh M, Bayer PE, Nevado B, Hurgobin B, Filatov D, Kilian A, Kamphuis LG, Singh KB, Berger JD, Hane JK, Edwards D, Erskine W, Nelson MN (2018a) Exploring the genetic and adaptive diversity of a pan-Mediterranean crop wild relative: narrow-leafed lupin. Theor Appl Genet 131:887–901PubMedPubMedCentralGoogle Scholar
  36. Mousavi-Derazmahalleh M, Nevado B, Bayer PE, Filatov D, Hane JK, Edwards D, Erskine W, Nelson MN (2018b) The western Mediterranean region provided the founder population of domesticated narrow-leafed lupin. Theor Appl Genet 131:2543–2554PubMedPubMedCentralGoogle Scholar
  37. Naganowska B, Wolko B, Sliwinska E, Kaczmarek Z (2003) Nuclear DNA content variation and species relationships in the genus Lupinus (Fabaceae). Ann Bot 92:349–355PubMedPubMedCentralGoogle Scholar
  38. Nelson MN, Książkiewicz M, Rychel S, Besharat N, Taylor C, Wyrwa K, Jost R, Erskine W, Cowling W, Berger J, Batley J (2017) The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T (FT) homologue. New Phytol 213:220–232PubMedGoogle Scholar
  39. Nelson M, Phan H, Ellwood S, Moolhuijzen P, Hane J, Williams A, O'Lone C, Fosu-Nyarko J, Scobie M, Cakir M, Jones M, Bellgard M, Ksiazkiewicz M, Wolko B, Barker S, Oliver R, Cowling W (2006) The first gene-based map of Lupinus angustifolius L.—location of domestication genes and conserved synteny with Medicago truncatula. Theor Appl Genet 113:225–238PubMedGoogle Scholar
  40. Nelson MN, Moolhuijzen P, Boersma J, Chudy M, Lesniewska K, Bellgard M, Oliver R, Swiecicki W, Wolko B, Cowling W (2010) Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus. DNA Res 17:73–83PubMedPubMedCentralGoogle Scholar
  41. Ogura T, Hernández A, Aizawa T, Ogihara J, Sunairi M, Alcaino J, Salvo-Garrido H, Maureira-Butler IJ (2013) Identification of a low digestibility δ-Conglutin in yellow lupin (Lupinus luteus L.) seed meal for atlantic salmon (Salmo salar L.) by coupling 2D-PAGE and mass spectrometry. PloS One 8:e80369Google Scholar
  42. Ogura T, Ogihara J, Sunairi M, Takeishi H, Aizawa T, Olivos-Trujillo MR, Maureira-Butler IJ, Salvo-Garrido HE (2014) Proteomic characterization of seeds from yellow lupin (Lupinus luteus L.). Proteomics 14:1543–1546PubMedGoogle Scholar
  43. Osorio CE, Udall JA, Salvo-Garrido H, Maureira-Butler IJ (2018a) Development and characterization of InDel markers for Lupinus luteus L. (Fabaceae) and cross-species amplification in other lupin species. Electron J Biotechnol 31:44–47Google Scholar
  44. Osorio CE, Amiard VS, Aravena-Calvo J, Udall JA, Doyle JJ, Maureira-Butler IJ (2018b) Chromatographic fingerprinting of Lupinus luteus L. (Leguminosae) main secondary metabolites: a case of domestication affecting crop variability. Genet Resour Crop Evol 65:1281–1291Google Scholar
  45. Parra-González L, Aravena-Abarzúa G, Navarro-Navarro C, Udall J, Maughan J, Peterson L, Salvo-Garrido H, Maureira-Butler I (2012) Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies. BMC Genomics 13:1Google Scholar
  46. Phan H, Ellwood S, Adhikari K, Nelson M, Oliver R (2007) The first genetic and comparative map of white lupin (Lupinus albus L.): identification of QTLs for anthracnose resistance and flowering time, and a locus for alkaloid content. DNA Res 14:59–70PubMedPubMedCentralGoogle Scholar
  47. Piornos JA, Burgos-Díaz C, Ogura T, Morales E, Rubilar M, Maureira-Butler I, Salvo-Garrido H (2015) Functional and physicochemical properties of a protein isolate from AluProt-CGNA: a novel protein-rich lupin variety (Lupinus luteus). Food Res Int 76:719–724PubMedGoogle Scholar
  48. Robertson NL, Coyne CJ (2009) First report of bean yellow mosaic virus from diseased Lupinus luteus in Eastern Washington. Plant Dis 93:319–319PubMedGoogle Scholar
  49. Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D, Kilian A (2011) Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc 5:P54PubMedCentralGoogle Scholar
  50. Stinchcombe J, Hoekstra H (2008) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100:158–170PubMedGoogle Scholar
  51. Stoddard F, Balko C, Erskine W, Khan H, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186Google Scholar
  52. Susek K, Bielski WK, Hasterok R, Naganowska B, Wolko B (2016) A first glimpse of wild lupin karyotype variation as revealed by comparative cytogenetic mapping. Front Plant Sci 7:1152PubMedPubMedCentralGoogle Scholar
  53. Susek K, Bielski W, Czyz KB, Hasterok R, Jackson SA, Wolko B, Naganowska B (2019) Impact of chromosomal rearrangements on the interpretation of lupin karyotype evolution. Genes 10:259PubMedCentralGoogle Scholar
  54. Taylor CM, Kamphuis LG, Zhang W, Garg G, Berger JD, Mousavi-Derazmahalleh M, Bayer PE, Edwards D, Singh KB, Cowling WA (2019) INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ 42:174–187Google Scholar
  55. Troll H (1940a) Saatzeitversuche mit Zucht-und Landsorten sowie Wildformen von L. luteus und L. angustifolius. Pflanzenbau 16:403–430Google Scholar
  56. Troll H (1940b) Vegetationsbeobachtungen an Lupinen in verschiedenen geographischen Breiten. Der Zücht 12:129–139Google Scholar
  57. Varshney R, Lekha P, Junichi K, Pooran M, Krishnamurthy L, Dave H (2011) Genomics and physiological approaches for root trait breeding to improve drought tolerance in chickpea (Cicer arietinum L.). In: Root genomics. Springer, Berlin, GermanyGoogle Scholar
  58. Wolko B, Clements JC, Naganowska B, Nelson MN, Yang H (2011) Lupinus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Heidelberg, GermanyGoogle Scholar
  59. Zehnder GW, Nichols AJ, Edwards OR, Ridsdill-Smith TJ (2001) Electronically monitored cowpea aphid feeding behavior on resistant and susceptible lupins. Entomol Exp Appl 98:259–269Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Agriculture and EnvironmentThe University of Western AustraliaPerthAustralia
  2. 2.UWA Institute of Agriculture, The University of Western AustraliaPerthAustralia
  3. 3.Centre for Plant Breeding and Genetics, The University of Western AustraliaPerthAustralia
  4. 4.CSIRO Agriculture & FoodPerthAustralia
  5. 5.USDA-ARS Southern Plains Agricultural Research CenterCollege StationUSA
  6. 6.Royal Botanic Gardens, KewArdinglyUK

Personalised recommendations