Skip to main content

Genetic and Genomic Resources in White Lupin and the Application of Genomic Selection

  • Chapter
  • First Online:

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Landraces represent extremely valuable and largely untapped genetic resources for white lupin improvement. The development of high-throughput, relatively low-cost genotyping techniques, such as genotyping-by-sequencing (GBS), has allowed to develop dense genetic maps and to explore the application of genomic selection to predict breeding values of inbred lines or germplasm accessions for complex polygenic traits. We provide an unprecedented assessment of genomic selection in lupins, by assessing the ability of two selection models (Ridge regression BLUP and Bayesian Lasso) to predict grain yield and other traits of 83 landraces from nine historical cropping regions and eight varieties of white lupin that were autumn-sown in Northern Italy. GBS was applied to 3–4 genotypes per landrace and two genotypes per variety, analyzing cultivar allele frequencies for 6,578 polymorphic SNP markers. The two selection models displayed similar predictive ability. Predictions proved highly accurate for grain yield, winter survival and onset of flowering, which displayed predictive abilities of 0.865, 0.852 and 0.838, respectively, based on cross-validation results. Moderately high predictive ability (0.626–0.495) emerged for pod fertility, individual seed weight, plant height, leaf size, and mainstem proportion of seeds and number of leaves. Genomic selection holds high promise for white lupin based on these results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikari K, Buirchell B, Yan G, Sweetingham M (2011) Two complementary dominant genes control flowering time in albus lupin (Lupinus albus L.). Plant Breed 130:496–499

    Article  CAS  Google Scholar 

  • Adhikari KN, Thomas G, Diepeveen D, Trethowan R (2013) Overcoming the barriers of combining early flowering and anthracnose resistance in white lupin (Lupinus albus L.) for the Northern Agricultural Region of Western Australia. Crop Pasture Sci 64:914–921

    Article  CAS  Google Scholar 

  • Annicchiarico P (2008) Adaptation of cool-season grain legume species across climatically-contrasting environments of southern Europe. Agron J 100:1647–1654

    Article  Google Scholar 

  • Annicchiarico P, Carroni AM (2009) Diversity of white and narrow-leafed lupin genotype adaptive response across south-European environments and implications for selection. Euphytica 166:71–81

    Article  Google Scholar 

  • Annicchiarico P, Iannucci A (2007) Winter survival of pea, faba bean and white lupin cultivars across contrasting Italian locations and sowing times, and implications for selection. J Agric Sci 145:611–622

    Article  Google Scholar 

  • Annicchiarico P, Thami-Alami I (2012) Enhancing white lupin (Lupinus albus L.) adaptation to calcareous soils through lime-tolerant plant germplasm and Bradyrhizobium strains. Plant Soil 350:131–144

    Article  CAS  Google Scholar 

  • Annicchiarico P, Harzic N, Carroni AM (2010) Adaptation, diversity, and exploitation of global white lupin (Lupinus albus L.) landrace genetic resources. Field Crops Res 119:114–124

    Article  Google Scholar 

  • Annicchiarico P, Harzic N, Huyghe C, Carroni AM (2011) Ecological classification of white lupin landrace genetic resources. Euphytica 180:17–25

    Article  Google Scholar 

  • Annicchiarico P, Nazzicari N, Li X, Wei Y, Pecetti L, Brummer EC (2015a) Accuracy of genomic selection for alfalfa biomass yield in different reference populations. BMC Genomics 16:1020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Annicchiarico P, Barrett B, Brummer EC, Julier B, Marshall AH (2015b) Achievements and challenges in improving temperate perennial forage legumes. Crit Rev Plant Sci 34:327–380

    Article  CAS  Google Scholar 

  • Annicchiarico P, Nazzicari N, Pecetti L, Romani M, Ferrari B, Wei Y, Brummer EC (2017a) GBS-based genomic selection for pea grain yield under severe terminal drought. Plant Genome 10:10.3835

    Google Scholar 

  • Annicchiarico P, Nazzicari N, Wei Y, Pecetti L, Brummer EC (2017b) Genotyping-by-sequencing and its exploitation for forage and cool-season grain legume breeding. Front Plant Sci 8:679

    Article  PubMed  PubMed Central  Google Scholar 

  • Annicchiarico P, Romani M, Pecetti L (2018a) White lupin variation for adaptation to severe drought stress. Plant Breed 137:782–789

    Article  CAS  Google Scholar 

  • Annicchiarico P, Carroni AM, Manunza P, Huyghe C, Pecetti L (2018b) Grain yield and morphology of dwarf vs tall white lupin in Mediterranean environments. In: Brazauskas G, Statkevičiūtė G, Jonavičienė K (eds) Breeding grasses and protein crops in the era of genomics. Springer, Dordrecht, The Netherlands, pp 113–117

    Chapter  Google Scholar 

  • Annicchiarico P, Nazzicari N, Pecetti L, Romani M, Russi L (2019a) Pea genomic selection for Italian environments. BMC Genomics 20:603

    Google Scholar 

  • Annicchiarico P, Nazzicari N, Ferrari B, Harzic N, Carroni AM, Romani M, Pecetti L (2019b) Genomic prediction of grain yield in contrasting environments for white lupin genetic resources. Mol Breed 39:142

    Google Scholar 

  • Arnoldi A, Boschin G, Zanoni C, Lammi C (2015) The health benefits of sweet lupin seed flours and isolated proteins. J Funct Foods 18:550–563

    Article  CAS  Google Scholar 

  • Atkins CA, Smith PMC, Gupta S, Jones MGK, Caligari PDS (1998) Genetics, cytology and biotechnology. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CABI, Wallingford, UK, pp 67–92

    Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  • Biazzi E, Nazzicari N, Pecetti L, Brummer EC, Palmonari A, Tava A, Annicchiarico P (2017) Genome-wide association mapping and genomic selection for alfalfa (Medicago sativa) forage quality traits. PLoS ONE 12:e0169234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buirchell BJ, Cowling WA (1998) Genetic resources in lupins. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CABI, Wallingford, UK, pp 41–66

    Google Scholar 

  • Burstin J, Salloignon P, Chabert-Martinello M, Magnin-Robert J-B, Siol M, Jacquin F, Chauveau A, Pont C, Aubert G, Delaitre C, Truntzer C, Duc G (2015) Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genomics 16:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowley R, Luckett DJ, Ash GJ, Harper JD, Vipin CA, Raman H, Ellwood S (2014) Identification of QTLs associated with resistance to Phomopsis pod blight (Diaporthe toxica) in Lupinus albus. Breed Sci 64:83–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croxford AE, Rogers T, Caligari PDS, Wilkinson MJ (2008) High-resolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps: a white lupin (Lupinus albus) map as an exemplar. New Phytol 180:594–607

    Article  CAS  PubMed  Google Scholar 

  • DeLacy IH, Basford KE, Cooper M, Bull IK, McLaren CG (1996) Analysis of multi-environment trials—an historical perspective. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CABI, Wallingford, UK, pp 39–124

    Google Scholar 

  • Duhnen A, Gras A, Teyssèdre S, Romestant M, Claustres B, Daydé J, Manfin B (2017) Genomic selection for yield and seed protein content in soybean: a study of breeding program data and assessment of prediction accuracy. Crop Sci 57:1325–1337

    Article  CAS  Google Scholar 

  • Duranti M, Consonni A, Magni C, Sessa F, Scarafoni A (2008) The major proteins of lupin seed: characterization and molecular properties for use as functional and nutraceutical ingredients. Trends Food Sci Technol 19:624–633

    Article  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladstones JS (1998) Distribution, origin, taxonomy, history and importance. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CABI, Wallingford, UK, pp 1–39

    Google Scholar 

  • Gresta F, Wink M, Prins U, Abberton M, Capraro J, Scarafoni A, Hill G (2017) Lupins in European cropping systems. In: Murphy-Bokern D, Stoddard FL, Watson CA (eds) Legumes in cropping systems. CABI, Wallingford, UK, pp 88–108

    Chapter  Google Scholar 

  • Hane JK, Ming Y, Kamphuis LG, Nelson MN, Garg G, Atkins CA, Bayer PE, Bravo A, Bringans S, Cannon S, Edwards D, Foley R, Gao L, Harrison MJ, Huang W, Hurgobin B, Li S, Liu C, McGrath A, Morahan G, Murray J, Weller J, Jian J, Singh KB (2017) A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant–microbe interactions and legume evolution. Plant Biotechnol J 15:318–330

    Article  CAS  PubMed  Google Scholar 

  • Harzic N, Huyghe C, Papineau J (1995) Dry matter accumulation and seed yield of dwarf autumn-sown white lupin (Lupinus albus L.). Can J Plant Sci 75:549–555.

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Article  Google Scholar 

  • Heffner EL, Jannink J-L, Iwata H, Souza E, Sorrells ME (2011) Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci 51:2597–2606

    Article  Google Scholar 

  • Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huyghe C (1997) White lupin (Lupinus albus L.). Field Crops Res 53:147–160

    Article  Google Scholar 

  • Huyghe C, Papineau J (1990) Winter development of autumn-sown white lupin: agronomic and breeding consequences. Agronomie 10:709–716

    Article  Google Scholar 

  • Jacob I, Feuerstein U, Heinz M, Schott M, Urbatzka P (2017) Evaluation of new breeding lines of white lupin with improved resistance to anthracnose. Euphytica 213:236

    Article  Google Scholar 

  • Jarquín D, Kocak K, Posadas L, Hyma K, Jedlicka J, Graef G, Lorenz A (2014) Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics 15:740

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarquín D, Specht J, Lorenz A (2016) Prospects of genomic prediction in the USDA soybean germplasm collection: historical data creates robust models for enhancing selection of accessions. G3 (Bethesda) 6:2329–2341

    Google Scholar 

  • Julier B, Huyghe C (1993) Description and model of the architecture of four genotypes of determinate autumn-sown white lupin (Lupinus albus l.) as influenced by location, sowing date and density. Ann Bot 72:493–501

    Article  Google Scholar 

  • Julier B, Huyghe C, Papineau J, Milford GFJ, Day JM, Billot C, Mangin P (1993) Seed yield and yield stability of determinate and indeterminate autumn-sown white lupins (Lupinus albus) grown at different locations in France and the UK. J Agric Sci 121:177–186

    Article  Google Scholar 

  • Kerley SJ, Shield IF, Huyghe C (2001) Specific and genotypic variation in the nutrient content of lupin species in soils of neutral and alkaline pH. Aust J Agric Res 52:93–102

    Article  Google Scholar 

  • Książkiewicz M, Nazzicari N, Yang H, Nelson N, Renshaw D, Rychel S, Ferrari B, Carelli M, Tomaszewska M, Stawiński S, Naganowska B, Wolko B, Annicchiarico P (2017) A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci Rep 7:15335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurlovich BS (2002) Lupins (geography, classification, genetic resources and breeding). Publishing House Intan, St. Petersburg, Russia

    Google Scholar 

  • Lagunes-Espinoza L, Huyghe C, Papineau J, Pacault D (1999) Effect of genotype and environment on pod wall proportion in white lupin: consequences to seed yield. Aust J Agric Res 50:575–582

    Article  Google Scholar 

  • Lin R, Renshaw D, Luckett D, Clements J, Yan G, Adhikari K, Yang H (2009) Development of a sequence-specific PCR marker linked to the gene “pauper” conferring low-alkaloids in white lupin (Lupinus albus L.) for marker assisted selection. Mol Breed 23:153–161

    Article  CAS  Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink J-L (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Article  Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Reif JC, Jiang Y, Wen Z, Wang D, Liu Z, Guo Y, Wei S, Wang S, Yang C, Wang H, Yang C, Lu W, Xu R, Zhou, Wang R, Sun Z, Chen H, Zhang W, Wu J, Hu G, Liu C, Luan X, Fu Y, Guo T, Han T, Zhang M, Sun B, Zhang L, Chen X, Han D, Yan H, Li W (2016) Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.). Mol Breed 36:113

    Google Scholar 

  • Mera M, Alcalde JM (2019) Lupinus albus is the species that achieves greatest grain and protein yields in chile. In: Developing lupin crop into a modern and sustainable food and feed source. Fundación PROINPA, Cochabamba, Bolivia, p 44

    Google Scholar 

  • Mera M, Beltran L, Miranda H, Rouanet JL (2006) Strong heritability across years and sites for pod wall proportion and specific weight in Lupinus albus and genotypic correlation with other pod and seed attributes. Plant Breed 125:161–166

    Article  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naganowska B, Wolko B, Śliwińska E, Kaczmarek Z (2003) Nuclear DNA content variation and species relationships in the genus Lupinus (Fabaceae). Ann Bot 92:349–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazzicari N, Biscarini F (2017) GROAN: genomic regression workbench (version 1.2.0). https://cran.r-project.org/package=GROAN. Accessed 19 July 2019

  • Nazzicari N, Biscarini F, Cozzi P, Brummer EC, Annicchiarico P (2016) Marker imputation efficiency for genotyping-by-sequencing data in rice (Oryza sativa) and alfalfa (Medicago sativa). Mol Breed 16:69

    Article  CAS  Google Scholar 

  • O’Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Gronwald JW (2013) An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161:705–724

    Article  PubMed  CAS  Google Scholar 

  • Papineau J, Huyghe C (2004) Le Lupin Doux Protéagineux. Editions France Agricole, Paris

    Google Scholar 

  • Park T, Casella G (2008) The Bayesian Lasso. J Am Stat Assoc 103:681–686

    Article  CAS  Google Scholar 

  • Phan HTT, Ellwood SR, Adhikari K, Nelson MN, Oliver RP (2007) The first genetic and comparative map of white lupin (Lupinus albus L.): identification of QTLs for anthracnose resistance and flowering time, and a locus for alkaloid content. DNA Res 14:59–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman R, Vipin C, Luckett DJ, Cowley RB, Ash GJ, Harper JD, Raman, H (2014) Localisation of loci involved in resistance to Diaporthe toxica and Pleiochaeta setosa in white lupin (Lupinus albus L.). Open J Genet 4:210

    Google Scholar 

  • Rodrigues ML, Pacheco CMA, Chaves MM (1995) Soil-plant water relations, root distribution and biomass partitioning in Lupinus albus L. under drought conditions. J Exp Bot 46:947–956

    Article  CAS  Google Scholar 

  • Roorkiwal M, Rathore A, Das RR, Singh MK, Jain A, Srinivasan S, Gaur PM, Chellapilla B, Tripathi S, Li Y, Hickey JM, Lorenz A, Sutton T, Crossa J, Jannink J-L, Varshney RK (2016) Genome-enabled prediction models for yield related traits in chickpea. Front Plant Sci 7:1666

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwender H, Fritsch A (2013) Scrime: analysis of high-dimensional categorical data such as SNP data (version 1.3.5). https://cran.r-project.org/web/packages/scrime/index.html. Accessed 19 July 2019

  • Searle SR, Casella G, McCulloch CE (2009) Variance components. Wiley, New York, USA

    Google Scholar 

  • Varshney RK, Kudapa H, Pazhamala L, Chitikineni A, Thudi M, Bohra A, Gaur PM, Janila P, Fikre A, Kimurto P, Ellis N (2015) Translational genomics in agriculture: some examples in grain legumes. Crit Rev Plant Sci 34:169–194

    Article  Google Scholar 

  • Viana JMS, Piepho H-P, Silva FF (2017) Quantitative genetics theory for genomic selection and efficiency of genotypic value prediction in open-pollinated populations. Sci Agric 74:41–50

    Article  Google Scholar 

  • Vipin CA, Luckett DJ, Harper JD, Ash GJ, Kilian A, Ellwood SR, Raman H (2013) Construction of integrated linkage map of a recombinant inbred line population of white lupin (Lupinus albus L.). Breed Sci 63:292–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Xu Y, Hu Z, Xu C (2018) Genomic selection methods for crop improvement: current status and prospects. Crop J 6:330–340

    Article  Google Scholar 

  • Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS (2017) Genomic selection in dairy cattle: the USDA experience. Annu Rev Anim Biosci 5:309–327

    Article  PubMed  Google Scholar 

  • Yang H, Lin R, Renshaw D, Li C, Adhikari K, Thomas G, Yan G (2010) Development of sequence-specific PCR markers associated with a polygenic controlled trait for marker-assisted selection using a modified selective genotyping strategy: a case study on anthracnose disease resistance in white lupin (Lupinus albus L.). Mol Breed 25:239–249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was part of the project ‘Legumes for the agriculture of tomorrow (LEGATO)’, which received funding from EU’s 7th Framework Programme under Grant Agreement No. 613551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Annicchiarico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Annicchiarico, P., Nazzicari, N., Ferrari, B. (2020). Genetic and Genomic Resources in White Lupin and the Application of Genomic Selection. In: Singh, K., Kamphuis, L., Nelson, M. (eds) The Lupin Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-21270-4_10

Download citation

Publish with us

Policies and ethics