Skip to main content

Abstract

Under the homogeneity assumption of k reliability functions from  a two-parameter Weibull distribution, we have developed the asymptotic theory for the simultaneous estimation of reliability functions. Improved estimation strategies based on the Graybill Deal, preliminary test and the James-Stein type shrinkage principles are discussed. Using the sequence of local alternatives and squared error loss function, we have derived the asymptotic distributional quadratic bias and risk of the said estimators. A comparison in terms of risk has also been carried out among the listed estimators relative to the benchmark maximum likelihood estimator. To be more specific, we have pointed out the regions where our suggested estimators perform better than other estimators. A comprehensive Monte-Carlo simulation study is presented to validate the behavior of various estimation methods in terms of simulated relative efficiency along with a real-data application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, S.E.: Penalty, Shrinkage and Pretest Strategies - Variable Selection and Estimation. Springer (2014)

    Google Scholar 

  2. Ahmed, S.E., Liu, S.: Asymptotic theory of simultaneous estimation of Poisson means. Linear Algebr. Appl. 430(10), 2734–2748 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bain, L.J., Engelhardt, M.E.: Statistical Analysis of Reliability and Life-Testing Models. CRC Press (1991)

    Google Scholar 

  4. Baklizi, A., Ahmed, S.E.: On the estimation of reliability function in a Weibull lifetime distribution. Stat.: J. Theor. Appl. Stat. 42(4), 351–362 (2008)

    Google Scholar 

  5. Crowder, M.J.: Some tests based on extreme values for a parametric survival model. J. R. Stat. Soc. Ser. B (Methodol.) 58(2), 417–424 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Crowder, M.J.: Tests for a family of survival models based on extremes. Recent Advacnes in Reliability Theory: Methodology, Practice, and Inference, pp. 307–321. Springer (2000)

    Google Scholar 

  7. Delignette-Muller, M.L., Dutang, C.: Fitdistrplus: an R package for fitting distributions. J. Stat. Softw. 64(4), 1–34 (2015)

    Article  Google Scholar 

  8. Graybill, F.A., Deal, R.B.: Combining unbiased estimators. Biometrics 15(4), 543–550 (1959)

    Article  MathSciNet  Google Scholar 

  9. James, W., Stein, C.: Estimation with quadratic loss. In: Proceedings of Fourth Berkely Symposium on Mathematical Statistics and Probability, pp. 361–379 (1961)

    Google Scholar 

  10. Judge, G.G., Bock, M.E.: The Statistical Implications of Pre-Test and Stein-Rule Estimators in Econometrics. North-Holland (1978)

    Google Scholar 

  11. Lawless, J.F.: Statistical Models and Methods for Lifetime Data. Wiley (2000)

    Google Scholar 

  12. Lisawadi, S., Ahmed, S.E., Reangsephet, O., Shah, M.K.A. (2018) Simultaneous estimation of Cronbach’s alpha coefficients. Communications in Statistics - Theory and Methods, pp. 1–22. https://doi.org/10.1080/03610926.2018.1473882

  13. McCool, J.I.: Using the Weibull Distribution: Reliability, Modeling, and Inference. Wiley (2012)

    Google Scholar 

  14. Rinne, H.: The Weibull Distribution: A Handbook. Chapman & Hall (2008)

    Google Scholar 

  15. Saleh, A.K.M.E.: Theory of Preliminary Test and Stein-Type Estimation with Applications. Wiley (2006)

    Google Scholar 

  16. Shah, M.K.A., Lisawadi, S., Ahmed, S.E.: Combining reliability functions of a Weibull distribution. Lobachevskii J. Math. 38(1), 101–109 (2017a)

    Article  MathSciNet  Google Scholar 

  17. Shah, M.K.A., Lisawadi, S., Ahmed, S.E.: Merging data from multiple sources: pretest and shrinkage perspectives. J. Stat. Comput. Simul. 87(8), 1577–1592 (2017b)

    Article  MathSciNet  Google Scholar 

  18. Team, R.C.: R: a language and environment for statistical computing (2016)

    Google Scholar 

  19. Watson, A.S., Smith, R.L.: An examination of statistical theories for fibrous materials in the light of experimental data. J. Mater. Sci. 20(9), 3260–3270 (1985)

    Article  Google Scholar 

  20. Zahra, N., Lisawadi, S., Ahmed, S.E.: Meta-analysis, pretest, and shrinkage estimation of kurtosis parameters. Commun. Stat.-Simul. Comput. 46(10), 7986–8004 (2017b)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by Thammasat University under the TU Research Scholar, Contract No. 51/2559. The research work of Professor S. Ejaz Ahmed was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Kashif Ali Shah .

Editor information

Editors and Affiliations

Appendices

Appendix

Following lemma due to Judge and Bock [10] is very useful for the smooth derivation of ADB, ADQB, and ADQR expressions of our estimators.

Lemma 3

Let the k-dimensional random vector \(\varvec{x}\) follows a multivariate normal distribution with mean \(\varvec{\mu }_{x}\) and covariance \(\varvec{I}_{k}\). Then, for any measurable function \(\phi (\cdot )\), we have

$$\begin{aligned} E\left[ \varvec{x}\phi (\varvec{x}'\varvec{x})\right]&=\varvec{\mu }_{x}E\left[ \phi \left( \chi ^{2}_{k+2}(\varDelta )\right) \right] \end{aligned}$$
(36)
$$\begin{aligned} E\left[ \varvec{x}\varvec{x}'\phi (\varvec{x}'\varvec{x})\right]&=\varvec{I}_{k}E\left[ \phi \left( \chi ^{2}_{k+2}(\varDelta )\right) \right] +\varvec{\mu }_{x}\varvec{\mu }'_{x}E\left[ \phi \left( \chi ^{2}_{k+4}(\varDelta )\right) \right] , \end{aligned}$$
(37)

where \(\varDelta \) is the non-centrality parameter.

Proof of Theorem 1

Let \(W_i=\sqrt{n_i}(\hat{\gamma }_i-\gamma _i)\) then from Lemma 1 and under the sequence of local alternatives \(\mathscr {H}_n\), we know that \(\sqrt{n_i}\left( \hat{\gamma }_i-\gamma _i\right) \xrightarrow {D}\mathscr {N}(0,v_0)\), which gives \(\sqrt{n}\sqrt{\lambda _{i,n}}\left( \hat{\gamma _i}-\gamma _i\right) \xrightarrow {D}\mathscr {N}\left( 0,v_{0}\right) \), or \(\sqrt{n}\left( \hat{\gamma _i}-\gamma _i\right) \xrightarrow {D}\mathscr {N}\left( 0,v_{0}p^{-1}_i\right) \). Thus, assuming independence among \(W_i\)’s and using matrix form we write

$$\begin{aligned} \varvec{W}_n=\sqrt{n}\left( \hat{\varvec{\gamma }}^{UE}-\varvec{\gamma }\right) \xrightarrow {D}\varvec{W}\sim \mathscr {N}_k(\varvec{0},\varvec{V}), \end{aligned}$$
(38)

where \(\varvec{V}=v_{0}\varvec{\varOmega }^{-1}\), \(v_0=(\gamma _0\ln \gamma _0)^{2}\left[ 1.109-0.514\ln \left( -\ln \gamma _0\right) +0.608\left\{ \ln \left( -\ln \gamma _0\right) \right\} ^{2}\right] \), \(\varvec{\varOmega }=\text {diag}\left( p_{1},p_{2},\cdots ,p_{k}\right) \), and fixing \(\lim (\lambda _{i,n})=p_i\) to be constant. Under \(\mathscr {H}_n\) we have \(\varvec{X}_n=\sqrt{n}(\hat{\varvec{\gamma }}^{UE}-\varvec{\gamma }_0)=\varvec{W}_n+\varvec{\xi }\), which is a linear function of \(\varvec{W}_n\) and thus

$$\begin{aligned} \varvec{X}_n=\sqrt{n}(\hat{\varvec{\gamma }}^{UE}-\varvec{\gamma }_0)\xrightarrow {D}\varvec{X}\sim \mathscr {N}_k(\varvec{\xi },\varvec{V}). \end{aligned}$$
(39)

Similarly, we write \(\varvec{Z}_n=\sqrt{n}(\hat{\varvec{\gamma }}^{RE}-\varvec{\gamma }_0)=\varvec{1}_k\varvec{1}'_k\varvec{\varOmega }_n\varvec{X}_n\), which is again a linear function of \(\varvec{X}_n\). Assuming \(\varvec{p}'\varvec{\xi }=0\), \(\varvec{\varOmega }_n\xrightarrow {P}\varvec{\varOmega }=\text {diag}(p_1,p_2,\cdots ,p_k)\) and invoking Slutsky’s theorem, we say that

$$\begin{aligned} \varvec{Z}_n=\sqrt{n}(\hat{\varvec{\gamma }}^{RE}-\varvec{\gamma }_0)\xrightarrow {D}\varvec{Z}\sim \mathscr {N}_k(\varvec{0},v_0\varvec{1}_k\varvec{1}'_k). \end{aligned}$$
(40)

Also, we have \(\varvec{Y}_n=\sqrt{n}(\hat{\varvec{\gamma }}^{UE}-\hat{\varvec{\gamma }}^{RE})=\varvec{X}_n-\varvec{Z}_n=(\varvec{I}_k-\varvec{1}_k\varvec{1}'_k\varvec{\varOmega }_n)\varvec{X}_n=\varvec{H}_n\varvec{X}_n\), which is a linear function of \(\varvec{X}_n\). Since, \(\varvec{H}_n\xrightarrow {P}\varvec{H}_0=\varvec{I}_k-\varvec{1}_k\varvec{1}'_k\varvec{\varOmega }\) and by Slutsky’s theorem

$$\begin{aligned} \varvec{Y}_n=\sqrt{n}(\hat{\varvec{\gamma }}^{UE}-\hat{\varvec{\gamma }}^{RE})\xrightarrow {D}\varvec{Y}\sim \mathscr {N}_k(\varvec{\beta },\varvec{B}_0), \end{aligned}$$
(41)

where \(\varvec{\beta }=\varvec{H}_0\varvec{\xi }\) and \(\varvec{B}_0=\varvec{H}_0\varvec{V}\varvec{H}_0'=\varvec{V}\varvec{H}_0'\).

For the joint distributions, we firstly note that \(\begin{pmatrix} \varvec{X}_n \\ \varvec{Y}_n \end{pmatrix}= \begin{pmatrix} \varvec{I}_k \\ \varvec{H}_n \end{pmatrix}\varvec{X}_n=\varvec{C}_n\varvec{X}_n\), which is a linear combination of \(\varvec{X}_n\) and by (39) and (41)

$$\begin{aligned} \begin{pmatrix} \varvec{X}_n \\ \varvec{Y}_n \end{pmatrix}\xrightarrow {D} \begin{pmatrix} \varvec{X} \\ \varvec{Y} \end{pmatrix}\sim \mathscr {N}_{2k} \begin{Bmatrix} \begin{pmatrix} \varvec{\xi } \\ \varvec{\beta } \end{pmatrix}, \begin{pmatrix} \varvec{V} &{} \varvec{B}_0\\ \varvec{B}_0' &{} \varvec{B}_0 \end{pmatrix} \end{Bmatrix}. \end{aligned}$$
(42)

Final, we have \(\begin{pmatrix} \varvec{Z}_n \\ \varvec{Y}_n \end{pmatrix}= \begin{pmatrix} \varvec{1}_k\varvec{1}'_k\varvec{\varOmega }_n \\ \varvec{H}_n \end{pmatrix}\varvec{X}_n=\varvec{F}_n\varvec{X}_n\), which is again a linear function of \(\varvec{X}_n\) and by (40) and (41)

$$\begin{aligned} \begin{pmatrix} \varvec{Z}_n \\ \varvec{Y}_n \end{pmatrix}\xrightarrow {D} \begin{pmatrix} \varvec{Z} \\ \varvec{Y} \end{pmatrix}\sim \mathscr {N}_{2k} \begin{Bmatrix} \begin{pmatrix} \varvec{0} \\ \varvec{\beta } \end{pmatrix}, \begin{pmatrix} v_0\varvec{1}_k\varvec{1}'_k &{} \varvec{0}\\ \varvec{0} &{} \varvec{B}_0 \end{pmatrix} \end{Bmatrix}. \end{aligned}$$
(43)

Proof of Theorem 2

Firstly, we compte ADB of the estimators under consideration as follows:

$$\begin{aligned} \varvec{b}(\hat{\varvec{\gamma }}^{LS})&=\lim _{n\rightarrow \infty }E\left[ \sqrt{n}(\hat{\varvec{\gamma }}^{LS}-\varvec{\gamma }_{n})\right] =\lim _{n\rightarrow \infty }E\left[ \sqrt{n}\left\{ \hat{\varvec{\gamma }}^{UE}-c(\hat{\varvec{\gamma }}^{UE}-\hat{\varvec{\gamma }}^{RE})-\varvec{\gamma }_0-\varvec{\xi }/\sqrt{n}\right\} \right] \nonumber \\&=\lim _{n\rightarrow \infty }E\left[ \varvec{X}_n-\varvec{\xi }-c\varvec{Y}_n\right] =E(\varvec{X})-\varvec{\xi }-cE(\varvec{Y})\nonumber \\&=-c\varvec{\beta }. \end{aligned}$$
(44)

By replacing \(c=0\), and \(c=1\) in (44), one can obtain ADB of \(\hat{\varvec{\gamma }}^{UE}\) and \(\hat{\varvec{\gamma }}^{RE}\), respectively. Secondly, by utilizing (36) we write

$$\begin{aligned} \varvec{b}(\hat{\varvec{\gamma }}^{SP})&=\lim _{n\rightarrow \infty }E\left[ \sqrt{n}(\hat{\varvec{\gamma }}^{SP}-\varvec{\gamma }_{n})\right] \nonumber \\&=\lim _{n\rightarrow \infty }E\left[ \sqrt{n}\left\{ \hat{\varvec{\gamma }}^{UE}-c(\hat{\varvec{\gamma }}^{UE}-\hat{\varvec{\gamma }}^{RE})I(\mathscr {D}_n<d_{n,\alpha })-\varvec{\gamma }_0-\varvec{\xi }/\sqrt{n}\right\} \right] \nonumber \\&=\lim _{n\rightarrow \infty }E\left[ \varvec{X}_n-\varvec{\xi }-c\varvec{Y}_nI(\mathscr {D}_n<d_{n,\alpha })\right] \nonumber \\&=E(\varvec{X})-\varvec{\xi }-cE[\varvec{Y}I(\chi ^{2}_{k-1}(\varDelta )<\chi ^{2}_{k-1,\alpha })]=-c E[\varvec{Y}I(\chi ^{2}_{k-1}(\varDelta )<\chi ^{2}_{k-1,\alpha })]\nonumber \\&=-c\varvec{\beta }\varPsi _{k+1}(\chi ^{2}_{k-1,\alpha };\varDelta ). \end{aligned}$$
(45)

For \(c=1\), (45) gives ADB of \(\hat{\varvec{\gamma }}^{PT}\). In the similar way, we may write

$$\begin{aligned} \varvec{b}(\hat{\varvec{\gamma }}^{JS})&=\lim _{n\rightarrow \infty }E\left[ \sqrt{n}(\hat{\varvec{\gamma }}^{JS}-\varvec{\gamma }_{n})\right] \nonumber \\&=\lim _{n\rightarrow \infty }E\left[ \sqrt{n}\left\{ \hat{\varvec{\gamma }}^{UE}-(k-3)\mathscr {D}_{n}^{-1}(\hat{\varvec{\gamma }}^{UE}-\hat{\varvec{\gamma }}^{RE})-\varvec{\gamma }_0-\varvec{\xi }/\sqrt{n}\right\} \right] \nonumber \\&=\lim _{n\rightarrow \infty }E\left[ \varvec{X}_n-\varvec{\xi }-(k-3)\varvec{Y}_n\mathscr {D}_{n}^{-1}\right] =E(\varvec{X})-\varvec{\xi }-(k-3)E[\varvec{Y}\chi ^{-2}_{k-1}(\varDelta )]\nonumber \\&=-(k-3)\varvec{\beta }E[\chi ^{-2}_{k+1}(\varDelta )]. \end{aligned}$$
(46)

Finally, we have

$$\begin{aligned} \varvec{b}(\hat{\varvec{\gamma }}^{S+})&=\lim _{n\rightarrow \infty }\mathbb {E}\left[ \sqrt{n}(\hat{\varvec{\gamma }}^{S+}-\varvec{\gamma }_{n})\right] \nonumber \\&=\lim _{n\rightarrow \infty }E\left[ \sqrt{n}\left\{ \hat{\varvec{\gamma }}^{JS}-\left( 1-(k-3)\mathscr {D}_{n}^{-1}\right) I(\mathscr {D}_n<(k-3))(\hat{\varvec{\gamma }}^{UE}-\hat{\varvec{\gamma }}^{RE})-\varvec{\gamma }_{n}\right\} \right] \nonumber \\&=\lim _{n\rightarrow \infty }E\left[ \sqrt{n}\left\{ \hat{\varvec{\gamma }}^{JS}-\varvec{\gamma }_{n}-\left( 1-(k-3)\mathscr {D}_{n}^{-1}\right) I(\mathscr {D}_n<(k-3))(\hat{\varvec{\gamma }}^{UE}-\hat{\varvec{\gamma }}^{RE})\right\} \right] \nonumber \\&=\varvec{b}(\hat{\varvec{\gamma }}^{JS})-\lim _{n\rightarrow \infty }E\left[ \varvec{Y}_nI(\mathscr {D}_n<(k-3))\right] +(k-3)\lim _{n\rightarrow \infty }E\left[ \varvec{Y}_n\mathscr {D}_{n}^{-1}I(\mathscr {D}_n<(k-3))\right] \nonumber \\&=\varvec{b}(\hat{\varvec{\gamma }}^{JS})-E\left[ \varvec{Y}I(\chi ^{2}_{k-1}(\varDelta )<(k-3))\right] +(k-3)E\left[ \varvec{Y}\chi ^{-2}_{k-1}(\varDelta )I(\chi ^{2}_{k-1}(\varDelta )<(k-3))\right] \nonumber \\&=\varvec{b}(\hat{\varvec{\gamma }}^{JS})-\varvec{\beta }\varPsi _{k+1}(k-3;\varDelta )+(k-3)\varvec{\beta }E\left[ \chi ^{-2}_{k+1}(\varDelta )I(\chi ^{2}_{k+1}(\varDelta )<(k-3))\right] \nonumber \\&=-\varvec{\beta }\left[ \varPsi _{k+1}(k-3;\varDelta )+(k-3)E[\chi ^{-2}_{k+1}(\varDelta )I(\chi ^{2}_{k+1}(\varDelta )>(k-3))]\right] . \end{aligned}$$
(47)

Using these ADB expressions together with (14) completes our proof.

Proof of Theorem 3

To compute ADQR as mentioned in (15), we first need AMSEM of the estimator. Therefore, we first have

$$\begin{aligned} \varvec{\varSigma }(\hat{\varvec{\gamma }}^{LS})&=\lim _{n\rightarrow \infty }E\left[ \sqrt{n}(\hat{\varvec{\gamma }}^{LS}-\varvec{\gamma }_{n})\sqrt{n}(\hat{\varvec{\gamma }}^{LS}-\varvec{\gamma }_{n})'\right] \nonumber \\&=\lim _{n\rightarrow \infty }E\left[ \left\{ (\varvec{X}_n-\varvec{\xi })-c\varvec{Y}_n\right\} \left\{ (\varvec{X}_n-\varvec{\xi })-c\varvec{Y}_n\right\} '\right] \nonumber \\&=V(\varvec{X})-2\underbrace{c E[(\varvec{X}-\varvec{\xi })\varvec{Y}']}_{T_1}+\, c^2\underbrace{E(\varvec{Y}\varvec{Y}')}_{T_0}, \end{aligned}$$
(48)

where

$$\begin{aligned} T_0=E(\varvec{Y}\varvec{Y}')=V(\varvec{Y})+E(\varvec{Y})E(\varvec{Y}')=\varvec{B}_0+\varvec{\beta }\varvec{\beta }', \end{aligned}$$
(49)

and by conditional expectation argument of a multivariate normal distribution, we write

$$\begin{aligned} T_1&=E[E\{(\varvec{X}-\varvec{\xi })|\varvec{Y}\}\varvec{Y}']=E[\{\varvec{0}+\varvec{B}_0\varvec{B}_0^{-1}(\varvec{Y}-\varvec{\beta })\}\varvec{Y}']\nonumber \\&=E(\varvec{Y}\varvec{Y}'-\varvec{\beta }\varvec{Y}')=E(\varvec{Y}\varvec{Y}')-\varvec{\beta }E(\varvec{Y}')=\varvec{B}_0. \end{aligned}$$
(50)

Replacing (49) and (50) in (48), we have the AMSEM of \(\hat{\varvec{\gamma }}^{LS}\) i.e.,

$$\begin{aligned} \varvec{\varSigma }(\hat{\varvec{\gamma }}^{LS})=\varvec{V}-c(2-c)\varvec{B}_0+c^2\varvec{\beta }\varvec{\beta }'. \end{aligned}$$
(51)

Thus, by (15) and letting \(\varvec{\beta }'\varvec{Q}\varvec{\beta }=\varDelta _{\beta }\) we write

$$\begin{aligned} R(\hat{\varvec{\gamma }}^{LS};\varvec{Q})=\text {tr}(\varvec{Q}\varvec{V})-c(2-c)\text {tr}(\varvec{Q}\varvec{B}_0)+c^2\varDelta _{\beta }. \end{aligned}$$
(52)

Replacement of \(c=0\), and \(c=1\) in (52) yields ADQR of \(\hat{\varvec{\gamma }}^{UE}\) and \(\hat{\varvec{\gamma }}^{RE}\). Secondly,

$$\begin{aligned} \varvec{\varSigma }(\hat{\varvec{\gamma }}^{SP})=&\lim _{n\rightarrow \infty }E\left[ \sqrt{n}(\hat{\varvec{\gamma }}^{SP}-\varvec{\gamma }_{n})\sqrt{n}(\hat{\varvec{\gamma }}^{SP}-\varvec{\gamma }_{n})'\right] \nonumber \\ =&\lim _{n\rightarrow \infty }E\left[ \left\{ (\varvec{X}_n-\varvec{\xi })-c\varvec{Y}_n I(\mathscr {D}_n<d_{n,\alpha })\right\} \left\{ (\varvec{X}_n-\varvec{\xi })-c\varvec{Y}_nI(\mathscr {D}_n<d_{n,\alpha })\right\} '\right] \nonumber \\ =&\lim _{n\rightarrow \infty }V(\varvec{X}_n)-2c\lim _{n\rightarrow \infty }E\left[ (\varvec{X}_n-\varvec{\xi })\varvec{Y}'_nI(\mathscr {D}_n<d_{n,\alpha })\right] +c^2\lim _{n\rightarrow \infty }E\left[ \varvec{Y}_n\varvec{Y}'_nI(\mathscr {D}_n<d_{n,\alpha })\right] \nonumber \\ =&V(\varvec{X})-2c\underbrace{E\left[ (\varvec{X}-\varvec{\xi })\varvec{Y}'I(\chi ^{2}_{k-1}(\varDelta )<\chi ^{2}_{k-1,\alpha })\right] }_{T_3}+\, c^2\underbrace{E\left[ \varvec{Y}\varvec{Y}'I(\chi ^2_{k-1}(\varDelta )<\chi ^2_{k-1,\alpha })\right] }_{T_2}, \end{aligned}$$
(53)

such that by (37) we write \(T_2\) as

$$\begin{aligned} T_2=\varvec{B}_0\varPsi _{k+1}(\chi ^{2}_{k-1,\alpha };\varDelta )+\varvec{\beta }\varvec{\beta }'\varPsi _{k+3}(\chi ^{2}_{k-1,\alpha };\varDelta ), \end{aligned}$$
(54)

and invoking conditional expectation argument along with (36) and (37), we write

$$\begin{aligned} T_3&=E\left[ E\bigl \{(\varvec{X}-\varvec{\xi })\big |\varvec{Y}\bigr \}\varvec{Y}'I(\chi ^{2}_{k-1}(\varDelta )<\chi ^{2}_{k-1,\alpha })\right] \nonumber \\&=E\left[ (\varvec{Y}-\varvec{\beta })\varvec{Y}'I(\chi ^{2}_{k-1}(\varDelta )<\chi ^{2}_{k-1,\alpha })\right] \nonumber \\&=\underbrace{E\left[ \varvec{Y}\varvec{Y}'I(\chi ^2_{k-1}(\varDelta )<\chi ^2_{k-1,\alpha })\right] }_{T_2}-\varvec{\beta }E\left[ \varvec{Y}'I(\chi ^2_{k-1}(\varDelta )<\chi ^2_{k-1,\alpha })\right] \nonumber \\&=\varvec{B}_0\varPsi _{k+1}(\chi ^{2}_{k-1,\alpha };\varDelta )+\varvec{\beta }\varvec{\beta }'\varPsi _{k+3}(\chi ^{2}_{k-1,\alpha };\varDelta )-\varvec{\beta }\varvec{\beta }'\varPsi _{k+1}(\chi ^{2}_{k-1,\alpha };\varDelta ). \end{aligned}$$
(55)

Replacing (54), (55) in (53) and collecting alike terms gives

$$\begin{aligned} \varvec{\varSigma }(\hat{\varvec{\gamma }}^{SP})&=\varvec{V}-c(2-c)\varvec{B}_0\varPsi _{k+1}(\chi ^{2}_{k-1,\alpha };\varDelta )\nonumber \\&+c\varvec{\beta }\varvec{\beta }'\left[ 2\varPsi _{k+1}(\chi ^{2}_{k-1,\alpha };\varDelta )-(2-c)\varPsi _{k+3}(\chi ^{2}_{k-1,\alpha };\varDelta )\right] . \end{aligned}$$
(56)

Using \(c=1\) in (56) we have the AMSEM of \(\hat{\varvec{\gamma }}^{PT}\) i.e.,

$$\begin{aligned} \varvec{\varSigma }(\hat{\varvec{\gamma }}^{PT})=\varvec{V}-\varvec{B}_0\varPsi _{k+1}(\chi ^{2}_{k-1,\alpha };\varDelta )+\, \varvec{\beta }\varvec{\beta }'\left[ 2\varPsi _{k+1}(\chi ^{2}_{k-1,\alpha };\varDelta )-\varPsi _{k+3}(\chi ^{2}_{k-1,\alpha };\varDelta )\right] . \end{aligned}$$

Thirdly, we have

$$\begin{aligned} \varvec{\varSigma }(\hat{\varvec{\gamma }}^{JS})&=\lim _{n\rightarrow \infty }E\left[ \sqrt{n}(\hat{\varvec{\gamma }}^{JS}-\varvec{\gamma }_{n})\sqrt{n}(\hat{\varvec{\gamma }}^{JS}-\varvec{\gamma }_{n})'\right] \nonumber \\&=\lim _{n\rightarrow \infty }E\left[ \left\{ (\varvec{X}_n-\varvec{\xi })-(k-3)\varvec{Y}_n\mathscr {D}_{n}^{-1}\right\} \left\{ (\varvec{X}_n-\varvec{\xi })-(k-3)\varvec{Y}_n\mathscr {D}_{n}^{-1}\right\} '\right] \nonumber \\&=\lim _{n\rightarrow \infty }V(\varvec{X}_n)-2(k-3)\lim _{n\rightarrow \infty }E\left[ (\varvec{X}_n-\varvec{\xi })\varvec{Y}'_n\mathscr {D}_n^{-1}\right] +\,(k-3)^2\lim _{n\rightarrow \infty }E\left[ \varvec{Y}_n\varvec{Y}'_n\mathscr {D}_n^{-2}\right] \nonumber \\&=V(\varvec{X})-2(k-3)\underbrace{E\left[ (\varvec{X}-\varvec{\xi })\varvec{Y}'\chi ^{-2}_{k-1}(\varDelta )\right] }_{T_5}+(k-3)^2\underbrace{E\left[ \varvec{Y}\varvec{Y}'\chi ^{-4}_{k-1}(\varDelta )\right] }_{T_4}.\nonumber \\ \end{aligned}$$
(57)

Using (37), \(T_4\) becomes

$$\begin{aligned} T_4=\varvec{B}_0'E[\chi ^{-4}_{k+1}(\varDelta )]+\varvec{\beta }\varvec{\beta }'E[\chi ^{-4}_{k+3}(\varDelta )]. \end{aligned}$$
(58)

By virtue of conditional expectation argument and and result (2.2.13e) mentioned in Saleh [15], we have

$$\begin{aligned} T_5=\varvec{B}_0E[\chi ^{-2}_{k+1}(\varDelta )]-2\varvec{\beta }\varvec{\beta }'E[\chi ^{-4}_{k+3}(\varDelta )]. \end{aligned}$$
(59)

Substituting (58), (59) in (57) and collecting alike terms gives

$$\begin{aligned} \varvec{\varSigma }(\hat{\varvec{\gamma }}^{JS})&=\varvec{V}-(k-3)\varvec{B}_0\Bigl [2E[\chi ^{-2}_{k+1}(\varDelta )]-(k-3)E[\chi ^{-4}_{k+1}(\varDelta )]\Bigr ]\nonumber \\&+\>(k-3)(k+1)\varvec{\beta }\varvec{\beta }'E[\chi ^{-4}_{k+3}(\varDelta )]. \end{aligned}$$

At the end, we consider

$$\begin{aligned} \varvec{\varSigma }(\hat{\varvec{\gamma }}^{S+})&=\lim _{n\rightarrow \infty }E\left[ \sqrt{n}(\hat{\varvec{\gamma }}^{S+}-\varvec{\gamma }_{n})\sqrt{n}(\hat{\varvec{\gamma }}^{S+}-\varvec{\gamma }_{n})'\right] \nonumber \\&=\lim _{n\rightarrow \infty }E\left[ \begin{aligned} \left\{ \sqrt{n}\left( \hat{\varvec{\gamma }}^{JS}-\varvec{\gamma }_{n}\right) -\{1-(k-3)\mathscr {D}^{-1}_n\}\varvec{Y}_{n}I\left( \mathscr {D}_n<(k-3)\right) \right\} \\ \left\{ \sqrt{n}\left( \hat{\varvec{\gamma }}^{JS}-\varvec{\gamma }_{n}\right) -\{1-(k-3)\mathscr {D}^{-1}_n\}\varvec{Y}_{n}I\left( \mathscr {D}_n<(k-3)\right) \right\} ' \end{aligned} \right] \nonumber \\&=\varvec{\varSigma }(\hat{\varvec{\gamma }}^{JS})+\lim _{n\rightarrow \infty }E\left[ \varvec{Y}_{n}\varvec{Y}'_{n}\{1-(k-3)\mathscr {D}^{-1}_n\}^{2}I\left( \mathscr {D}_n<(k-3)\right) \right] \nonumber \\&\>\>\>\>\>-2\lim _{n\rightarrow \infty }E\left[ \sqrt{n}\left( \hat{\varvec{\gamma }}^{JS}-\varvec{\gamma }_{n}\right) \varvec{Y}'_{n}\{1-(k-3)\mathscr {D}^{-1}_n\}I\left( \mathscr {D}_n<(k-3)\right) \right] \nonumber \\&=\varvec{\varSigma }(\hat{\varvec{\gamma }}^{JS})-\lim _{n\rightarrow \infty }E\left[ \varvec{Y}_{n}\varvec{Y}'_{n}\{1-(k-3)\mathscr {D}^{-1}_n\}^{2}I\left( \mathscr {D}_n<(k-3)\right) \right] \nonumber \\&\>\>\>\>\>+2\lim _{n\rightarrow \infty }E\left[ \varvec{Y}_n\varvec{Y}'_n\{1-(k-3)\mathscr {D}^{-1}_n\}I\left( \mathscr {D}_n<(k-3)\right) \right] \nonumber \\&\>\>\>\>\>-2\lim _{n\rightarrow \infty }E\left[ \left( \varvec{X}_n-\varvec{\xi }\right) \varvec{Y}'_{n}\{1-(k-3)\mathscr {D}^{-1}_n\}I\left( \mathscr {D}_n<(k-3)\right) \right] \nonumber \\&=\varvec{\varSigma }(\hat{\varvec{\gamma }}^{JS})-\underbrace{E\left[ \varvec{Y}\varvec{Y}'\{1-(k-3)\chi ^{-2}_{k-1}(\varDelta )\}^{2}I\left( \chi ^{2}_{k-1}(\varDelta )<(k-3)\right) \right] }_{T_{8}}\nonumber \\&\>\>\>\>\>+2\underbrace{E\left[ \varvec{Y}\varvec{Y}'\{1-(k-3)\chi ^{-2}_{k-1}(\varDelta )\}I\left( \chi ^{2}_{k-1}(\varDelta )<(k-3)\right) \right] }_{T_{7}}\nonumber \\&\>\>\>\>\>-2\underbrace{E\left[ \left( \varvec{X}-\varvec{\xi }\right) \varvec{Y}'\{1-(k-3)\chi ^{-2}_{k-1}(\varDelta )\}I\left( \chi ^{2}_{k-1}(\varDelta )<(k-3)\right) \right] }_{T_{6}}. \end{aligned}$$
(60)

Applying (37) to \(T_7\) and \(T_8\), conditional expectation argument to \(T_6\) and collecting alike terms, reduces (60) to

$$\begin{aligned} \varvec{\varSigma }(\hat{\varvec{\gamma }}^{S+})&=\varvec{\varSigma }(\hat{\varvec{\gamma }}^{JS})-\varvec{B}_0E\left[ \{1-(k-3)\chi ^{-2}_{k+1}(\varDelta )\}^{2}I(\chi ^{-2}_{k+1}(\varDelta )<(k-3))\right] \nonumber \\&+\>\varvec{\beta }\varvec{\beta }'\left[ \begin{aligned} 2E[\{1-(k-3)\chi ^{-2}_{k+1}(\varDelta )\}I(\chi ^{-2}_{k+1}(\varDelta )<(k-3))]\\ -E[\{1-(k-3)\chi ^{-2}_{k+3}(\varDelta )\}^{2}I(\chi ^{-2}_{k+3}(\varDelta )<(k-3))] \end{aligned}\right] . \end{aligned}$$

A similar treatment mentioned earlier for obtaining \(R(\hat{\varvec{\gamma }}^{LS};\varvec{Q})\) applied to these AMSEM completes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shah, M.K.A., Zahra, N., Ahmed, S.E. (2020). On the Simultaneous Estimation of Weibull Reliability Functions. In: Xu, J., Ahmed, S., Cooke, F., Duca, G. (eds) Proceedings of the Thirteenth International Conference on Management Science and Engineering Management. ICMSEM 2019. Advances in Intelligent Systems and Computing, vol 1001. Springer, Cham. https://doi.org/10.1007/978-3-030-21248-3_7

Download citation

Publish with us

Policies and ethics