Skip to main content

Future Prospects of Land Cover Change in Hungary: Modelling and Forecasts

  • Chapter
  • First Online:
Three Decades of Transformation in the East-Central European Countryside

Abstract

This chapter makes an attempt to model the land cover changes of Hungary and create predictions for the future. To perform the modelling task, the Land Change Modeler v2.0 for ArcGIS software was used. From the available options, the Multi-Layer Perceptron method was selected. The 1990 and 2006 Corine Land Cover maps were served as basemaps for the modelling. Explanatory variables describing physical environment, relative location, socio-economic attributes was used to generate transition potential maps between each land cover category. Two types of forecasts were prepared: a soft prediction displaying the probability of transition in a given location, and a hard prediction, which describes the most probable land cover pattern in Hungary for 2030. This paper presents two scenarios, a base and an enhanced one, in which elements of spatial planning, future climatic and demographic changes were also introduced as spatial constraints and incentives. The results indicate a significant future increase of the area of forests and a moderate expansion of artificial surfaces and vineyards and orchards, while the share of arable lands, grasslands and heterogeneous agricultural areas will probably decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In order to estimate the accuracy of the generated MLP network, the software divides the sample of the actual sub-model to learning and testing database. After every iteration, the cells of the testing sample are divided into classes of transition and persistence, and the software compares the results to the real occurrences, and calculates the percentage of accuracy.

  2. 2.

    The value of the Skill Measure can vary between −1 and 1, with the zero value indicating only random matches. Therefore the model has an explanatory power only if the Skill Measure is different than zero.

  3. 3.

    To evaluate the land use models, the Kappa simulation method is also frequently used, which specifically concentrates to the accuracy of the transition forecast with regard to the location (KTransLoc) and the quantity (KTransition).

References

  • Alonso, W. F. (1964). Location and land use. New Haven: Harvard University Press.

    Book  Google Scholar 

  • Baker, W. L. (1989). A review of models of landscape change. Landscape Ecology, 2(2), 111–133.

    Article  Google Scholar 

  • Balmann, A. (1996). Farm-based modelling of regional structural change: A cellular automata approach. European Review of Agricultural Economics, 24, 85–108.

    Article  Google Scholar 

  • Burnham, B. O. (1973). Markov intertemporal land use simulation model. Southern Journal of Agricultural Economics, 5(1), 253–258.

    Google Scholar 

  • Duray, B., & Keveiné Bárány, I. (2010). Studies on landscape dynamics—A modell of the connection between regeneration potential and land use change (Tájdinamikai vizsgálatok - a tájhasználat-változás és regenerációs potenciál összefüggéseinek modellezése). In J. Unger & E. Pál-Molnár (Eds.), Geospheres 2009: The results of the Doctoral School of Geosciences of the University of Szeged (Geoszférák 2009: A Szegedi Tudományegyetem Földtudományok Doktori Iskolájának eredményei) (pp. 99–149). Szeged: GeoLitera.

    Google Scholar 

  • European Environmental Agency. (2007). Land-use scenarios for Europe: qualitative and quantitative analysis on a European scale. EEA Technical Report 9 Available http://projects.mcrit.com/esponfutures/documents/European%20Studies/EEA%20(2007)%20Land-use%20scenarios%20for%20Europe%20qualitative%20and%20quantitative%20analysis.pdf. Accessed October 3, 2007.

  • Forrester, J. W. (1969). Urban dynamics. Cambridge: MIT Press.

    Google Scholar 

  • Geographical Sciences Committee. (2014). Advancing land change modeling: Opportunities and research requirements. Washington, DC: National Academies Press.

    Google Scholar 

  • Guo, H. D., Zhang, L., & Zhu, L. W. (2015). Earth observation big data for climate change research. Advances in Climate Change Research, 6(2), 108–117.

    Article  Google Scholar 

  • Hagen, A. (2002). Multi-method assessment of map similarity. In M. Ruiz, M. Gould, & J. Ramon (Eds.), Proceedings of the 5th AGILE Conference on Geographic Information Science (pp. 171–182). Palma: European Commission.

    Google Scholar 

  • Heistermann, M., Müller, C., & Ronneberger, K. (2006). Land in sight? Achievements, deficits and potentials of continental to global scale land-use modeling. Agriculture, Ecosystems & Environment, 114(2), 141–158.

    Article  Google Scholar 

  • Koomen, E., & Stillwell, J. (2007). Modelling land-use change. Dordrecht: Springer.

    Book  Google Scholar 

  • Lambin, E. F., Rounsevell, M. D. A., & Geist, H. J. (2000). Are agricultural land-use models able to predict changes in land-use intensity? Agriculture, Ecosystems & Environment, 82(1), 321–331.

    Article  Google Scholar 

  • Mas, J. F., Kolb, M., Paegelow, M., Olmedo, M. T. C., & Houet, T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling and Software, 51, 94–111.

    Article  Google Scholar 

  • Munteanu, C., Kuemmerle, T., Boltiziar, M., et al. (2014). Forest and agricultural land change in the Carpathian region—A meta-analysis of long-term patterns and drivers of change. Land Use Policy, 38, 685–697.

    Article  Google Scholar 

  • Rasmussen, R. O., & Weber, R. (2013). Characterizing land use and changes at the regional level. Rural Studies, 32, 21–61.

    Google Scholar 

  • Sinclair, R. (1967). Von Thunen and urban sprawl. Annals of the Association of American Geographers, 57(1), 72–87.

    Article  Google Scholar 

  • Tamás, J. (2013). Precision agriculture. University of Debrecen. Available https://www.tankonyvtar.hu/hu/tartalom/tamop412A/2011_0009_Tamas_Janos-Precision_Agriculture/index.html.Accessed October 3, 2013.

  • Thünen, J. H. (1966). Isolated state: An English edition of Der isolierte Staat. New York: Pergamon Press.

    Google Scholar 

  • Tobler, W. (1979). Cellular geography. In S. Gale & G. Olsson (Eds.), Philosophy in geography (pp. 379–386). Dordrecht: Reidel.

    Chapter  Google Scholar 

  • van Schrojenstein Lantman, J., Verburg, P. H., Bregt, A., & Geertman, S. (2011). Core principles and concepts in land-use modelling: a literature review. In E. Koomen & J. Borsboom-van Beurden (Eds.), Land-use modelling in planning practice (pp. 35–57). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Vaszócsik, V. (2016). Modelling the Hungarian land use change processes (Hazai tájhasználat változási folyamatok modellezése). In G. Horváth (Ed.), Land use and land protection—Challenges and opportunities (Tájhasználat és tájvédelem – kihívások és lehetőségek) (pp. 190–197). Budapest: Eötvös Loránd Tudományegyetem Földrajz- és Földtudományi Intézet Környezet-és Tájföldrajzi Tanszék.

    Google Scholar 

  • Vaszócsik, V. (2017). How far can cities grow? Modeling of processes in land use change (Meddig nőhetnek a városok? A területhasználat-változási folyamatok modellezése). Területi Statisztika, 57(2), 205–223.

    Google Scholar 

  • Verburg, P. H., Eickhout, B., & van Meijl, H. (2008). A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Annals of Regional Science, 42(1), 57–77.

    Article  Google Scholar 

Download references

Acknowledgements

The results are based on the project Long-term socio-economic forecasting for Hungary (EEA-C12-11), funded by the EEA Grants, within the frame of Adaptation to Climate Change Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenő Zsolt Farkas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farkas, J.Z., Lennert, J. (2019). Future Prospects of Land Cover Change in Hungary: Modelling and Forecasts. In: Bański, J. (eds) Three Decades of Transformation in the East-Central European Countryside. Springer, Cham. https://doi.org/10.1007/978-3-030-21237-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21237-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21236-0

  • Online ISBN: 978-3-030-21237-7

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics