Gudis DA, Cohen NA. Cilia dysfunction. Otolaryngol Clin N Am. 2010;43:461–72.
CrossRef
Google Scholar
Antunes MB, Cohen NA. Mucociliary clearance—a critical upper airway host defense mechanism and methods of assessment. Curr Opin Allergy Clin Immunol. 2007;7:5–10.
PubMed
CrossRef
Google Scholar
Physiology SPLE. Mucociliary clearance and neural control. In: Kenneedy DW, Bolger WE, Zinreich SJ, editors. Diseases of the sinuses diagnosis and management. London: BC Decker; 2001.
Google Scholar
Fokkens WJ, Scheeren RA. Upper airway defence mechanisms. Paediatr Respir Rev. 2000;1:336–41.
CAS
PubMed
Google Scholar
Bartlett JA, Fischer AJ, PB MC Jr. Innate immune functions of the airway epithelium. Contrib Microbiol. 2008;15:147–63.
CAS
PubMed
CrossRef
Google Scholar
Pallanch J, Jorissen M. Objective assessment of nasal function. In: Flint PW, Haughey BH, Lund V, Niparko JK, Robbins KT, Thomas JR, Lesperance MM, editors. Cummings otolaryngology head and neck surgery. 6th ed. Philadelphia: Elsevier Saunders; 2015.
Google Scholar
Lund VJ. Nasal physiology: neurochemical receptors, nasal cycle, and ciliary action. Allergy Asthma Proc. 1996;17:179–84.
CAS
PubMed
CrossRef
Google Scholar
Eccles R. The nose and control of nasal airflow. In: Adkinson NF, Bochner BS, Burks AW, Busse WW, Holgate ST, Lemanske RF, O’Hehir RE, editors. Middleton’s allergy principles and practice. 8th ed. Philadelphia: Elsevier Saunders; 2014.
Google Scholar
Matsui H, Randell SH, Peretti SW, Davis CW, Boucher RC. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J Clin Invest. 1998;102:1125–31.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sears PR, Yin WN, Ostrowski LE. Continuous mucociliary transport by primary human airway epithelial cells in vitro. Am J Physiol Lung Cell MolPhysiol. 2015;309:L99–108.
CAS
CrossRef
Google Scholar
Hulse KE. Immune mechanisms of chronic rhinosinusitis. Curr Allergy Asthma Rep. 2016;16(1):1.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Quinton PM. Viscosity versus composition in airway pathology. Am J Respir Crit Care Med. 1994;149:6–7.
CAS
PubMed
CrossRef
Google Scholar
Kilburn KH. A hypothesis for pulmonary clearance and its implications. Am Rev Respir Dis. 1968;98:449–63.
CAS
PubMed
Google Scholar
Trindade SH, de Mello JF Jr, Mion Ode G, Lorenzi-Filho G, Macchione M, Guimarães ET, Saldiva PH. Methods for studying mucociliary transport. Braz J Otorhinolaryngol. 2007;73:704–12.
PubMed
CrossRef
Google Scholar
Chen D, Ren J, Mei Y, Xu Y. The respiratory ciliary motion produced by dynein activity alone: a computational model of ciliary ultrastructure. Technol Health Care. 2015;23:S577–86.
PubMed
CrossRef
Google Scholar
Revington M, Lacroix JS, Potter EK. Sympathetic and parasympathetic interaction in vascular and secretory control of the nasal mucosa in anaesthetized dogs. J Physiol. 1997;505:823–83.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Munkholm M, Mortensen J. Mucociliary clearance: pathophysiological aspects. Clin Physiol Funct Imaging. 2014;34:171–7.
PubMed
CrossRef
Google Scholar
Shoemark A, Hogg C. Electron tomography of respiratory cilia. Thorax. 2013;68:190–1.
PubMed
CrossRef
Google Scholar
Ueno H, Bui KH, Ishikawa T, Imai Y, Yamaguchi T, Ishikawa T. Structure of dimericaxonemal dynein in cilia suggests an alternative mechanism of force generation. Cytoskeleton (Hoboken). 2014;71:412–22.
CAS
CrossRef
Google Scholar
Ishikawa T. Structural biology of cytoplasmic and axonemaldyneins. J Struct Biol. 2012;179:229–34.
CAS
PubMed
CrossRef
Google Scholar
Chilvers MA, O'Callaghan C. Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: comparison with the photomultiplier and photodiode methods. Thorax. 2000;55:314–7.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Antunes MB, Cohen NA. Respiratory cilia: Mucociliary clearance. In: Stucker FJ, Souza CD, Kenyon GS, Lian TS, Draf W, Schick B, editors. Rhinology and facial plastic surgery. New York: Springer; 2009.
Google Scholar
Gueron S, Levit-Gurevich K, Liron N, Blum JJ. Cilia internal mechanism and metachronal coordination as the result of hydrodynamical coupling. Proc Natl Acad Sci U S A. 1997;94:6001–6.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Teff Z, Priel Z, Gheber LA. The forces applied by cilia depend linearly on their frequency due to constant geometry of the effective stroke. Biophys J. 2008;94:298–305.
CAS
PubMed
CrossRef
Google Scholar
Satir P. The role of axonemal components in ciliary motility. Comp Biochem Physiol A Comp Physiol. 1989;94:351–7.
CAS
PubMed
CrossRef
Google Scholar
Keeling J, Tsiokas L, Maskey D. Cellular mechanisms of ciliary length control cells. 2016; 5(1): pii: E6.
Google Scholar
Messerklinger W. On the drainage of the normal frontal sinus of man. Acta Otolaryngol. 1967;63:176–81.
CAS
PubMed
CrossRef
Google Scholar
Brokaw CJ. Control of flagellar bending: a new agenda based on dynein diversity. Cell Motil Cytoskeleton. 1994;28:199–204.
CAS
PubMed
CrossRef
Google Scholar
Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol. 2007;69:377–400.
CAS
PubMed
CrossRef
Google Scholar
Yeh TH, Su MC, Hsu CJ, Chen YH, Lee SY. Epithelial cells of nasal mucosa express functional gap junctions of connexin 43. Acta Otolaryngol. 2003;123:314–20.
CAS
PubMed
CrossRef
Google Scholar
Gheber L, Priel Z. Synchronization between beating cilia. Biophys J. 1989;55:183–91.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sutto Z, Conner GE, Salathe M. Regulation of human airway ciliary beat frequency by intracellular pH. J Physiol. 2004;560:519–32.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Green A, Smallman LA, Logan AC, Drake-Lee AB. The effect of temperature on nasalciliary beat frequency. Clin Otolaryngol Allied Sci. 1995;20:178–80.
CAS
PubMed
CrossRef
Google Scholar
Wong LB, Miller IF, Yeates DB. Stimulation of ciliary beat frequency by autonomic agonists: in vivo. J Appl Physiol. 1988;65:971–81.
CAS
PubMed
CrossRef
Google Scholar
Sanderson MJ, Dirksen ER. Mechanosensitivity of cultured ciliated cells from the mammalian respiratory tract: implications for the regulation of mucociliary transport. Proc Natl Acad Sci U S A. 1986;83:7302–6.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest. 2002;109:571–7.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Tarran R, Trout L, Donaldson SH, Boucher RC. Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia. J Gen Physiol. 2006;127:591–604.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lai SK, Wang YY, Wirtz D, Hanes J. Micro- and macrorheology of mucus. Adv Drug Deliv Rev. 2009;61:86–100.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
King M. Physiology of mucus clearance. Paediatr Respir Rev. 2006;7:S212–4.
PubMed
CrossRef
Google Scholar
Vallet C, Escudier E, Roudot-Thoraval F, Blanchon S, Fauroux B, Beydon N, et al. Primary ciliary dyskinesia presentation in 60 children according to ciliary ultrastructure. Eur J Pediatr. 2013;172:1053–60.
PubMed
CrossRef
Google Scholar
Zariwala MA, Omran H, Ferkol TW. The emerging genetics of primary ciliary dyskinesia. Proc Am Thorac Soc. 2011;8:430–3.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Haq IJ, Gray MA, Garnett JP, Ward C, Brodlie M. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets. Thorax. 2016;71:284–7.
PubMed
CrossRef
Google Scholar
Uslu H, Uslu C, Varoglu E, Demirci M, Seven B. Effects of septoplasty and septal deviation on nasal mucociliary clearance. Int J Clin Pract. 2004;58:1108–11.
CAS
PubMed
CrossRef
Google Scholar
Ulusoy B, Arbag H, Sari O, Yöndemli F. Evaluation of the effects of nasal septal deviation and its surgery on nasal mucociliary clearance in both nasal cavities. Am J Rhinol. 2007;21:180–3.
PubMed
CrossRef
Google Scholar
Soane RJ, Carney AS, Jones NS, Frier M, Perkins AC, Davis SS, Illum L. The effect of the nasal cycle on mucociliary clearance. Clin Otolaryngol Allied Sci. 2001;26:9–15.
CAS
PubMed
CrossRef
Google Scholar
Passali D, Bellussi L, Lauriello M. Diurnal activity of the nasal mucosa. Relationship between mucociliary transport and local production of secretory immunoglobulins. Acta Otolaryngol. 1990;110:437–42.
CAS
PubMed
Google Scholar
Cohen NA. Sinonasalmucociliary clearance in health and disease. Ann Otol Rhinol Laryngol Suppl. 2006;196:20–6.
PubMed
CrossRef
Google Scholar
Stevens WW, Lee RJ, Schleimer RP, Cohen NA. Chronic rhinosinusitis pathogenesis. J Allergy Clin Immunol. 2015;136:1442–53.
PubMed
PubMed Central
CrossRef
Google Scholar
Sun SS, Hsieh JF, Tsai SC, Ho YJ, Kao CH. The role of rhinoscintigraphy in the evaluation of nasal mucociliary clearance function in patients with sinusitis. Nucl Med Commun. 2000;21:1029–32.
CAS
PubMed
CrossRef
Google Scholar
Sun SS, Hsieh JF, Tsai SC, Ho YJ, Kao CH. Evaluation of nasal mucociliary clearance function in allergic rhinitis patients with technetium 99m-labeled macroaggregated albumin rhinoscintigraphy. Ann Otol Rhinol Laryngol. 2002;111:77–9.
PubMed
CrossRef
Google Scholar
Kirtsreesakul V, Somjareonwattana P, Ruttanaphol S. The correlation between nasal symptom and mucociliary clearance in allergic rhinitis. Laryngoscope. 2009;119:1458–62.
PubMed
CrossRef
Google Scholar
Randell SH, Boucher RC; University of North Carolina Virtual Lung Group Effective mucus clearance is essential for respiratory health. Am J Respir Cell Mol Biol 2006; 35:20–28.
Google Scholar
Stannard W, O'Callaghan C. Ciliary function and the role of cilia in clearance. J Aerosol Med. 2006;19:110–5.
CAS
PubMed
CrossRef
Google Scholar
Corbo GM, Foresi A, Bonfitto P, Mugnano A, Agabiti N, Cole PJ. Measurement of nasalmucociliary clearance. Arch Dis Child. 1989;64:546–50.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Andersen I, Lundqvist GR, Proctor DF. Human nasal mucosal. Arch Environ Health. 1971;23:408–20.
CAS
PubMed
CrossRef
Google Scholar
Deitmer T. A modification of the saccharine test for nasal mucociliaryclearance. Rhinology. 1986;24:237–40.
CAS
PubMed
Google Scholar
Dostbil Z, Polat C, Uysal IÖ, Bakır S, Karakuş A, Altındağ S. Evaluation of nasal Mucociliary transport rate by Tc-macroaggregated albumin Rhinoscintigraphy in woodworkers. Int J Mol Imaging. 2011:620482.
Google Scholar
De Boeck K, Proesmans M, Mortelmans L, Van Billoen B, Willems T, Jorissen M. Mucociliary transport using 99mTc-albumin colloid: a reliable screening test for primary ciliary dyskinesia. Thorax. 2005;60:414–7.
PubMed
PubMed Central
CrossRef
Google Scholar
Rizzo JA, Medeiros D, Silva AR, Sarinho E. Benzalkonium chloride and nasal mucociliary clearance: a randomized, placebo-controlled, crossover, double-blind trial. Am J Rhinol. 2006;20:243–7.
PubMed
CrossRef
Google Scholar
Dostbil Z, Dag Y, Cetinkaya O, Akdag M, Tasdemir B. Assessment of technetium-99m labeled macroaggregated albumin rhinoscintigraphy for the measurement of nasal mucociliary transport rate: intratest, interobserver, and intraobserver reproducibility. Scientifica (Cairo) 2014: 982515, 2014, 1.
Google Scholar
Di Giuda D, Galli J, Calcagni ML, Corina L, Paludetti G, Ottaviani F, De Rossi G. Rhinoscintigraphy: a simple radioisotope technique to study the mucociliary system. Clin Nucl Med. 2000;25:127–30.
PubMed
CrossRef
Google Scholar
Chilvers MA, Rutman A, O'Callaghan C. Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J Allergy Clin Immunol. 2003;112:518–24.
PubMed
PubMed Central
CrossRef
Google Scholar
Schipor I, Palmer JN, Cohen AS, Cohen NA. Quantification of ciliary beat frequency in sinonasal epithelial cells using differential interference contrast microscopy and high-speed digital video imaging. Am J Rhinol. 2006;20:124–7.
PubMed
CrossRef
Google Scholar
Clare DK, Magescas J, Piolot T, Dumoux M, Vesque C, Pichard E, et al. Basal foot MTOC organizes pillar MTs required for coordination of beating cilia. Nat Commun. 2014;12(5):4888.
CrossRef
CAS
Google Scholar
Gamarra F, Bergner A, Stauss E, Stocker I, Grundler S, Huber RM. Rotation frequency of human bronchial and nasal epithelial spheroids as an indicator of mucociliary function. Respiration. 2006;73:664–72.
PubMed
CrossRef
Google Scholar
Tsang KW, Tipoe GL, Mak JC, Sun J, Wong M, Leung R, et al. Ciliary central microtubular orientation is of no clinical significance in bronchiectasis. Respir Med. 2005;99:290–7.
PubMed
CrossRef
Google Scholar
O'Brien DW, Morris MI, Ding J, Zayas JG, Tai S, King M. A mechanism of airway injury in an epithelial model of mucociliary clearance. Respir Res. 2004;5:10.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Zayas JG, O'Brien DW, Tai S, Ding J, Lim L, King M. Adaptation of an amphibian mucociliary clearance model to evaluate early effects of tobacco smoke exposure. Respir Res. 2004;5(9)
Google Scholar
Macchione M, Lorenzi-Filho G, Guimarães ET, Junqueira VB, Saldiva PH. The use of the frog palate preparation to assess the effects of oxidants on ciliated epithelium. Free Radic Biol Med. 1998;24:714–21.
CAS
PubMed
CrossRef
Google Scholar