Skip to main content

Introduction to Dormancy in Aquatic Invertebrates: Mechanism of Induction and Termination, Hormonal and Molecular-Genetic Basis

  • Chapter
  • First Online:
Dormancy in Aquatic Organisms. Theory, Human Use and Modeling

Part of the book series: Monographiae Biologicae ((MOBI,volume 92))

Abstract

Dormancy is a profound and ancient adaptation found in a wide spectrum of plants and animals of all habitats. In diapause, the switch between active and dormant states is driven by hormonal mechanism that usually includes a photoperiodic pacemaker. Temperature, food limitation, and some other stress factors as well are shown as driven by diapause induction in aquatic invertebrates. In the last decade, diapause studies from a wide variety of topics have demonstrated that diapause switch mechanisms may be developed to create novel applications in biotechnology. Resting eggs accumulated in the surface lake sediments represent a “bank” of zooplankton species that assures their persistence in a community, in spite of periodic harsh conditions.

Studies on the vertical distribution of resting eggs in sediment cores yield useful information to opening important perspectives for paleolimnological climate reconstruction and paleoecology. Cultivation of live food, like rotifers, Daphnia, Artemia, or marine copepods, is an expanding application of practical use of diapause in modern aquaculture. Biotechnologies can now be imagined for maintaining ecosystems outside the Earth’s biosphere. Resting stages provide at least two properties highly suitable for such ecosystems. They can be easily transported in space for a long time without special care as compared with an active ecosystem. In addition, storage of seeds and diapausing animals will provide a reserve in case of an unpredictable destruction of the active part of an ecosystem caused, for example, by a meteorite strike.

The term alien species takes on a new meaning when one considers another aspect of space biology. By enlarging the distribution area of the species, colonization of new environments could be a safeguard against its extinction. Thus, it would also be important to develop technologies to guard against invasions of other species via ship ballast waters and similar means.

We also suggest that molecular-genetic insights of diapause in invertebrates provide new ways of looking at carcinogenesis. Tumor cells may have parallels in postdiapause embryonic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiken DE (1969) Photoperiod, endocrinology and the crustacean molt cycle. Science 164:149–155

    Article  CAS  PubMed  Google Scholar 

  • Aiken DE (1981) Molting and growth. In: The biology and management of the Lobster, vol 1. Academic, New York, pp 136–163

    Google Scholar 

  • Aiken DE, Waddy SL (1981) Reproductive biology. In: The biology and management of the Lobster, vol 1. Academic, New York, pp 215–276

    Google Scholar 

  • Alekseev VR (1984) Effect of chlorine treatment on zooplankton in sturgeon nursery fish ponds. Trans State Lakes Rivers Res Inst 225:95–104. in Russian

    Google Scholar 

  • Alekseev VR (1986) Role of diapause in acclimatization of crustaceans. Proc GosNIORKH 252:61–68. in Russian

    Google Scholar 

  • Alekseev VR (1989) Effect of diapause on oxygen consumption in. Astacidae Tr GosNIORKh 300:80–90

    Google Scholar 

  • Alekseev VR (1990) Diapauza rakoobraznykh: ekologo-fiziologicheskie aspekty (Diapause in Crustacea: ecological–physiological aspects). Nauka, Moscow, 144 pp (in Russian)

    Google Scholar 

  • Alekseev VR (1998) Biochemical and physiological characteristics of Crustaceans in diapause: the internal mechanism of reactivation. Arch Hydrobiol 52:463–476

    Google Scholar 

  • Alekseev VR (2004) Effects of dial vertical migration on ephippia production in Daphnia. J Limnol 63:1–6

    Article  Google Scholar 

  • Alekseev V, Lampert W (2001) Maternal control of resting egg production in Daphnia. Nature 414:899–901

    Article  CAS  PubMed  Google Scholar 

  • Alekseev V, Lampert W (2004) Maternal effects of photoperiod and food level on life history characteristics of the cladoceran Daphnia pulicaria Forbes. Hydrobiologia 526:225–230

    Article  Google Scholar 

  • Alekseev VR, Starobogatov YI (1996) Types of diapause in Crustacea: definitions, distributions, evolution. Hydrobiologia 320:15–26

    Article  Google Scholar 

  • Alekseev VR, Sychev VN (2006) Effect of space station conditions on resting egg survivorship and parameters of life cycle in D. magna. Abst COSPAR Beijin July 2006

    Google Scholar 

  • Alekseev VR, Pinel-Alloul B, Methot J (1999) Role of summer cyclopid diapause in lake meyobenthos forming in Quebec lakes (Canada). Abst. Annual scientific session of Zoological Institute, Academic Publishers, St. Petersburg 8–9 (in Russian)

    Google Scholar 

  • Alekseev VR, Djenderedjan K, Fiks B (2001) Role of summer diapause in success of invasion of a new invertebrate predator into plankton ecosystem of a large mountain lake. In: Proceedings of 9th International Conference conservation and management of lakes, BIWAKO, Japan, pp 41–47

    Google Scholar 

  • Alekseev V, Dumont H, Pensaert J, Baribwegure D, Vanfleteren JR (2006a) A redescription of Eucyclops serrulatus (Fischer, 1851) (Crustaceaa, Copepoda, Cyclopoida) and some related taxa, with a phylogeny of the E. serrulatus-group. Zooogica Scripta 35:123–158

    Article  Google Scholar 

  • Alekseev VR, Sychev VN, Novikova NI (2006b) Studying the phenomenon of dormancy: why it is important for space exploration. Abst. COSPAR Beijin July 2006

    Google Scholar 

  • Alekseev VR, de Stasio BT, Gilbert JJ (eds) (2007) Diapause in aquatic invertebrates: theory and human use. Monographiae Biologicae 84. Springer, Dordrecht, 257 p.

    Google Scholar 

  • Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL (2000) daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev 14:1512–1527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apfeld J, Kenyon C (1989) Cell Nonautonomy of C. elegans daf 2 function in the regulation of diapause and lifespan. Cell 95:199–210

    Article  Google Scholar 

  • Arbaciauskas K (1998) Life history traits of Exephippial and par thenogenetically derived Daphnids: indicators of different life history strategies. Adv Limnol 52:339–358

    Google Scholar 

  • Arbačiauskas K (2001) Life-history variation related to the first adult instar in daphnids derived from diapausing and subitaneous eggs. Hydrobiologia 442:157–164

    Article  Google Scholar 

  • Arbačiauskas K (2004) Seasonal phenotypes of Daphnia: post-diapause and directly developing offspring. J Limnol 63:7–15

    Article  Google Scholar 

  • Askerov MK, Sidorov PA (1964) Biology of phyllopods in sturgeon ponds and struggle against the crustaceans. Trans Azerbajdjan Res Inst Fish Ind 4:83–97. in Russian

    Google Scholar 

  • Baldwin WS, LeBlanc GA (1994) Identification of multiple steroid hydroxylases in Daphnia magna and their modulation by xenobiotics. Environ Toxicol Chem 13:1013–1021

    Article  CAS  Google Scholar 

  • Banta AM, Brawn LA (1929) Control of sex in Сladocera. 1. Crowding the mothers as a means of controlling male production. Physiol Zool 2:80–92

    Article  CAS  Google Scholar 

  • Behning AL (1941) Cladocera of the Caucuses, Gruzmedizdat Tbilisi (in Russian)

    Google Scholar 

  • Berg K (1934) Cyclic reproduction, sex determination and depression in Cladocera. Camb Biol Rev 9:1

    Article  Google Scholar 

  • Bliss DE (1966) Relation between reproduction and growth in decapod Crustaceans. Am Zool 6:231–233

    Article  CAS  PubMed  Google Scholar 

  • Bogatova IB, Erofeeva GI (1985) Incubation of Artemia salina resting eggs without preliminary stimulation. Hydrobiol J 21:52–56 (in Russian)

    Google Scholar 

  • Bouchon D, Remoissenent G, Mocquard JP (1985) Influence de la temperature sur 1’entree en reproduction de Palaemonetes varians Leach (Crustace, Decapoda, Natantia). Bull Sci Zool Fr 110:439–447

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (2001) Genetic shift in photoperiodic response correlated with global warming. Proc Natl Acad Sci USA 98:14509–14511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branford GK (1978) The influence of day-length, temperature and season on the hatching rhythm of Homarus gammarus. J Mar Biol Assoc UK 58:639–658

    Article  Google Scholar 

  • Bunning E (1936) Die Endonom Tagesrhythmik Als Grundlage der Photoperiodischen Reakton. Ber Deut Bot Ges 54:590–607

    Google Scholar 

  • Burner HC, Halcrow K (1977) Experimental induction of the production of ephippia by Daphnia magna Straus (Cladocera). Crustaceana 32:77–86

    Article  Google Scholar 

  • Cáceres CE (1997) Temporal variation, dormancy, and coexistence: a field test of the storage effect. Proc Natl Acad Sci USA 94:9171–9175

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlisle DB (1957) On the hormonal inhibition of moulting in decapod Crustacea. J Mar Biol Ass UK 36:291–307

    Article  Google Scholar 

  • Carlisle DB, Pitman WJ (1961) Diapause, neurosecretion and hormones in Copepoda. Nature 190:827–828

    Article  CAS  PubMed  Google Scholar 

  • Carvalho GR, Wolf HG (1989) Resting eggs of lake-Daphnia I. Distribution, abundance and hatching of eggs collected from various depths in lake sediments. Freshw Biol 22:459–470

    Article  Google Scholar 

  • Cassada R, Russell R (1975) The Dauer Larva: a post embryonic developmental variant of the Nematode C. elegans. Dev Biol 46:326–342

    Article  CAS  PubMed  Google Scholar 

  • Champeau A (1970) Etude de la vie latente chez des Calanoides (Copepodes) caracteristiques des eaux temperairres de Basse—Provence. Ann Fac Sci Marseille 44:155–189

    Google Scholar 

  • Chang ES (1984) In: Engels W et al (eds) Ecdysteroids in Crustacea: role in reproduction, molting, and larval development advances in invertebrate reproduction, vol 3. Elsevier, Amsterdam, pp 223–249

    Google Scholar 

  • Coker RE (1933) Arret du developpement chez les copepodes. Bull Biol 67:276–287

    Google Scholar 

  • Cooley JM (1971) The effect of temperature on the development of resting eggs of Diaptomus oregonensis Lillj (Copepoda:Calanoida). Limnol Oceanogr 16:921–926

    Article  Google Scholar 

  • Crag TL, Denlinger DL (2000) Sequence and transcription patterns of 60S ribosomal protein P0 a diapause regulated AP endonuclease in the flesh fly, Sarcophaga crassipalpis. Gene 255:381–388

    Article  Google Scholar 

  • Crisp DJ, Patel B (1969) Environmental control of the breeding of three boreoarctic cirripedes. Mar Biol 2:283–295

    Article  Google Scholar 

  • da Graca LS, Zimmerman KK, Mitchell MC, Kozhan-Gorodetska M, Sekiewicz K, Morales Y, Patterson GI (2003) DAF-5 is a Ski oncoprotein homolog that functions in a neuronal TGFb pathway to regulate C. elegans dauer development. Development 131:435–446

    Article  PubMed  CAS  Google Scholar 

  • Danilevsky AS (1961) Fotoperiodizm i sezonnoe razvitie nasekomykh (Photoperiodism and seasonal development of insects). Lening Gos University, Leningrad, 243 pp (In Russian)

    Google Scholar 

  • De Stasio BT Jr (1990) The role of dormancy and emergence patterns in the dynamics of a freshwater zooplankton community. Limnol Oceanogr 35:1079–1090

    Article  Google Scholar 

  • Demensy N (1958) Recherches sur la Mue de Pubert du Decapoda Brachyoure carcinus Maeneas. Arch Zool Exp Gen 95:253 pp.

    Google Scholar 

  • Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47:93–122

    Article  CAS  PubMed  Google Scholar 

  • Denlinger DL, Armbruster PA (2014) Mosquito diapause. Annu Rev Entomol 59:73–93. https://doi.org/10.1146/annurev-ento-011613-162023

    Article  CAS  PubMed  Google Scholar 

  • Denlinger DL, Yocum GD, Rinehart JP (2012) Hormonal control of diapause. In: Gilbert LI (ed) Insect endocrinology. Academic, San Diego, pp 430–463

    Chapter  Google Scholar 

  • Einsle U (1967) Die ausseren Bedingungen der Diapause plankisch lebender Cyclops-Arten. Arch Hydrobiol 63:387–403

    Google Scholar 

  • Finch CE, Ruvkun G (2001) The genetics of aging. Ann Rev Genom Hum Genet 2:435–462

    Article  CAS  Google Scholar 

  • Fries G (1964) Uber die Einwirkung der Tagesperiodik und der Temperatur auf den Generationswechsel, die Weibchengrosse und die Eir von Daphnia magna Straus. Ztschr Morphol und Okol Tierr 53:475–516

    Article  Google Scholar 

  • Fryer G (1996) Diapause a potent force in the evolution of freshwater crustaceans. Hydrobiologia 320:1–14

    Article  Google Scholar 

  • Fryer G, Smyly WIP (1954) Some remarks on the resting stagees of some fresh water cyclopoid and harpacticoid copepods. Ann Mag Nat Hist 7:65–72

    Article  Google Scholar 

  • Georgi LL, Albert PS, Riddle DL (1990) daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell 61:635–645

    Article  CAS  PubMed  Google Scholar 

  • Gerisch B, Antebi A (2004) Hormonal signals produced by daf 9/cytochrome P450 regulate C. elegans Dauer Dia pause in response to environmental cues. Development 131:1765–1776

    Article  CAS  PubMed  Google Scholar 

  • Gerisch B, Weitzel C, Kober-Eisermann C, Rottiers V, Antebi A (2001) A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and lifespan. Dev Cell 1:841–851

    Article  CAS  PubMed  Google Scholar 

  • Gilbert JJ, Thompson GA Jr (1968) Alpha tocopherol control of sexuality and polymorphism in the rotifer Asplanchna. Science 159:734–736

    Article  CAS  PubMed  Google Scholar 

  • Gliwicz ZM, Rowan MG (1984) Survival of Cyclops Abyssorum tatricus (Copepoda, Crustacea) in Alpine Lakes stocked with Planktivrous fish. Limnol Oceanogr 29:1290–1299

    Article  Google Scholar 

  • Golden JW, Riddle DL (1984) The Caenorhabditis elegans Dauer Larva: developmental effects of pheromone, food, and temperature. Dev Biol 102:368–378

    Article  CAS  PubMed  Google Scholar 

  • Grosvener G, Smith G (1913) The life cycle of Moina rectirostris. Q J Microsc Soc 58:87–112

    Google Scholar 

  • Hairston NG Jr, Cáceres C (1996) Distribution of crustacean diapause: Micro- and macroevolutionary pattern and process. Hydrobiologia 320:27–44

    Article  Google Scholar 

  • Hairston NG Jr, Olds EJ (1987) Population differences in the timing of diapause: A test of hypotheses. Oecologia 71:339–344

    Article  PubMed  Google Scholar 

  • Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11:1975–1980

    Article  CAS  PubMed  Google Scholar 

  • Herman AW, Sameoto DD, Longhurst AR (1981) Vertical and horizontal distribution patterns of copepods near the shelf .break front south of Nova Scotia, Canad. J Fish Aquatic Sci 38:1065–1076

    Article  Google Scholar 

  • Hirche HJ (1996) Diapause in the marine copepod, Calanus finmarchicus – a review. Ophelia 44:129–143

    Article  Google Scholar 

  • Ichikawa T (2003) Firing activities of neurosecretory cells producing diapause hormone and its related peptides in the female silkmoth, Bombyx mori. I. Labial cells. Zool Sci 20:971–978

    Article  CAS  Google Scholar 

  • Ivleva IV (1981) Temperature and metabolic rates in aquatic animals, Kiev. Naukova Dumka Publishers (in Russian)

    Google Scholar 

  • Iwami M (2000) Bombyxin: an insect brain peptide that belongs to the insulin family. Zool Sci 17:1035–1044

    Article  CAS  Google Scholar 

  • Jassem W, Mocquard JP, Juchault P (1982) Determinisme de la reproduction saisonniere des femelles d’Armadillidium vulgare Latr. (Crustace, Isopode, Oniscoide) IV. Contribution a la connaissance de la perception du signal photopreriodique in duisant 1’entree en reproduction: mode de discrimination entre Ie Jour et la mit longueurs d’onde actives. Ann Sci Nat Zool et Biol Anim 4:85–90

    Google Scholar 

  • Jia K, Albert PS, Riddle DL (2002) daf 9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development 129:221–231

    CAS  PubMed  Google Scholar 

  • Johnson CL (2003) Ecdysteroids in the oceanic copepod Calanus pacificus: variation during molt cycle and change associated with diapause. Mar Ecol 257:159–165

    Article  CAS  Google Scholar 

  • Juchault P, Pavese A, Mocquard JP (1980) Determinisme de la reproduction saisonniere des femelles d’Armadillidium vulgare Latr. (Crustacea, Isopode, Oniscoide) II. Etude phiques differentes. Ann Sci Nat Zool et Biol Anim 2:99–108

    Google Scholar 

  • Kubersky ES (1977) Worldwide distribution and ecology of Alonopsis (Cladocera, Chydoridae) with a description of Alonopsis americana sp. nova, Intern Rev ges. Hydrobiology 62:649–685

    Google Scholar 

  • Lair KP, Bradshaw WE, Holzapfel CM (1997) Evolutionary divergence of the genetic architecture underlying photoperiodism in the pitcher-plant mosquito, Wyeomyia smithii. Genetics 147:1873–1883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lampert W (2003) Evolutionary ecology: natural selection in freshwater systems. In: Moya A, Font E (eds) Evolution from molecules to ecosystems. University Press, Oxford, pp 109–121

    Google Scholar 

  • Laufer H, Ahl JSB, Sagi A (1993) The role of juvenile hormones in crustacean reproduction. Am Zool 33:365–374

    Article  CAS  Google Scholar 

  • Lee CL, Fieder DR (1982) Induced spawning in the freshwater prawn, Macrobrachium australiense Holthuis 1950 (Crustacea. Decapoda: Palaemonidae). Aquaculture 29:45–52

    Article  Google Scholar 

  • Lee RY, Hench J, Ruvkun G (2001) Regulation of C. elegans daf 16 and Its Human Ortholog FKHRL1 by the daf 2 Insulin Like Signaling Pathway. Curr Biol 11:1950–1957

    Article  CAS  PubMed  Google Scholar 

  • Li W, Kennedy SG, Ruvku G (2003) daf 28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the daf 2 signaling pathway. Genes Dev 17:844–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein daf 16 by insulin/IGF 1 and germline signaling. Nat Genet (2):139–145

    Article  CAS  PubMed  Google Scholar 

  • Little G (1968) Induced Winter Breeding and Larval Development in the Shrimp Palaemonetes pugio (Holthius), Crustaceana. Suppl 2:19–26

    Google Scholar 

  • MacRae TH (2005) Diapause: diverse states of developmental and metabolic arrest. J Biol Res 3:3–14

    CAS  Google Scholar 

  • Makrushin AV (1968) Condition of ephippial female ovary in some Cladocera species. Trans State Lakes Rivers Res Inst 67: 365–369 (in Russian)

    Google Scholar 

  • Makrushin AV, Stepanova IE (2003) Ob izberatenoj pronizaemosti obolochek latentnuh jaiz Moina macrocopa (Daphniiformes, Crustacea). (On the selective permeability of covering membrane in Moina macrocopa restin eggs). Zoologicheskij J 82:117–118

    Google Scholar 

  • Mansingh A (1971) Physiological classification of dormencies in insects. Can Entomol 103:983–1009

    Article  Google Scholar 

  • March BGE (1982) Decreased day length and light intensity as factors inducing reproduction in Gammarus lacustris Sars. Can J Zool 60:2962–2965

    Article  Google Scholar 

  • Marcus NH (1982) Photoperiodic and temperature regulation of diapause in Labidocera aestiva (Copepoda: Calanoida). Hydrobiologia 162:45–52

    Google Scholar 

  • Marcus NH (1986) Population dynamics of marine copepods: the importance of photoperiodism. Am Zool 26:469–477

    Article  Google Scholar 

  • Marcus NH (1996) Ecological and evolutionary significance of resting eggs in marine copepods: past, present and future studies. Hydrobiologia 320:141–152

    Article  Google Scholar 

  • Marcus NH, Lutz RV, Burnett W, Cable P (1994) Age, viability, and the vertical distribution of zooplankton resting eggs from an anoxic basin: evidence of an egg bank. Limnol Oceanogr 39:154–158

    Article  Google Scholar 

  • Mocquard JP, Juchault P (1985) Photoperiode et reproduction chez les femelles d’Armadillidium vulgare Latreille (Crustacea, Isopode, Oniscoide): variation en fonction de 1’origine geographique des populations. Bull Soc Zool Fr 110:425–439

    Google Scholar 

  • Monchenko VI (2003) Free living cyclopoid copepods of the Pontho-Caspian basin, Kiev. Naukova Dumka Academic Publishers (in Russian)

    Google Scholar 

  • Mori A, Romero-Severson J, Severson DW (2007) Genetic basis for reproductive diapauses is correlated with life history traits within Culex pipiens complex. Insect Mol Biol 16:515–524

    CAS  PubMed  Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol 3 OH Kinase family member regulating longevity and diapause in C. elegans. Nature 382:536–539

    Article  CAS  PubMed  Google Scholar 

  • Mortimer CH (1936) Experimentelle und cytologische Untersuchungen liber den Generationswechsel der Cladoceren. Zool Jb Abt allg Zool und Physiol Tiere 56:323–388

    Google Scholar 

  • Munuswamy N, Nazar AK, Dumont HJ (1992) Is pH(i) a factor for dormancy in freshwater fairy shrimps. Curr Sci 62:751–752

    Google Scholar 

  • Naya Y, Mayumi O, Midori I, Wataru M (1989) What is molt inhibiting hormone? The role of an ecdysteroidogenesis inhibitor in the crustacean molting cycle. Proc Natl Acad Sci USA 86:6826–6829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson RJ, Denlinger DL, Somers DE (eds) (2010) Photoperiodism: the biological calendar. Oxford University Press, New York, p 596

    Google Scholar 

  • Nilssen JP (1978) On the evolution of life histories of limnetic cyclopoid copepods. Memorie dell’Istituto Italiano di Idrobiologia 36:193–214

    Google Scholar 

  • Nilssen J, Elgmork K (1977) Cyclops abyssorum – life cycle dynamic and habitat selection. Memorie dell’Istituto Italiano di Idrobiologia 34:197–238

    Google Scholar 

  • Novak VJ (1966) Insect hormones. Methuen, London, 478 pp.

    Google Scholar 

  • Odum EP (1963) Ecology. New York/London

    Google Scholar 

  • Oehlmann J, Schulte Oehlmann U (2003) Endocrine disruption in invertebrates. Pure Appl Chem 75:2207–2218

    Article  CAS  Google Scholar 

  • Olmstead A, LeBlanc G (2000) Effects of endocrine active chemicals on the development of sex characteristics of Daphnia magna. Environ Toxicol Chem 19:2107–2113

    Article  CAS  Google Scholar 

  • Olmstead A, LeBlanc GA (2001) Temporal and quantitative changes in sexual reproductive cycling of the Cladoceran Daphnia magna by a juvenile hormone analog. J Exp Zool 290:148–155

    Article  CAS  PubMed  Google Scholar 

  • Olmstead AW, LeBlanc GA (2003) Insecticidal juvenile hormone analogs stimulate the production of male offspring in the crustacean Daphnia magna. Environ Health Perspect 111:919–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otsu T (1963) Bihonnonal control of the sexual cycle in the fresh water Crab Potamon dehaani. Embriologia 8:1–20

    Article  Google Scholar 

  • Owen RW (1981) Fronts and eddies in the sea: mechanism, interactions and biological effects. In: Longhurst AR (ed) Analysis of marine ecosystems. Academic Press, New York

    Google Scholar 

  • Pancella JR, Stross RG (1963) Light induced hatching of Daphnia resting eggs. Chesap Sci 4:404–425

    Article  Google Scholar 

  • Panov VE, Krylov PI, Riccardi N (2004) Role of diapause in dispersal and invasion success by aquatic invertebrates. J Limnol 63(Suppl 1):56–69

    Article  Google Scholar 

  • Parker R (1966) The influence of photoperiod on reproduction and molting of Daphnia schodleri Sars. Physiol Zool 39:266–279

    Article  Google Scholar 

  • Passano LM (1951) The X Organ, a neurosecretory gland controlling molting in crab. Anat Rec 1: 559 pp.

    Google Scholar 

  • Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, Buchman AR, Ferguson KC, Heller J, Platt DM, Pasquinelli AA (2001) Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 15:672–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pijanowska J (1997) Alarm signals in Daphnia. Oecologia 112:12–16

    Article  PubMed  Google Scholar 

  • Poelchau MF, Reynolds JA, Elsik CG, Denlinger DL, Armbruster PA (2013) Deep sequencing reveals complex mechanism of diapauses preparation in the invasive mosquito, Aedes albopictus. Proc R Soc B 280:20130143

    Article  PubMed  PubMed Central  Google Scholar 

  • Pourriot R, Clement P (1973) Photoperiodisme et cycle heterogonique chez Notommata copeus (Rotifere, Monogonorte) II. In fluence de gualite de la lumiere Spectres d’action. Arch Zool Exp et Gen 114:277–300

    Google Scholar 

  • Qiu Z, MacRae TH (2007) Developmentally Regulated Synthesis of P8, a Stress Associated Transcription Cofactor, in Diapause Destined Embryos of Artemia franciscana. Cell Stress Chaperon 12:255–264

    Article  CAS  Google Scholar 

  • Quackenbush LS (1986) Crustacean endocrinology: a review. Can J Fish Aquat Sci 43:2271–2282

    Article  CAS  Google Scholar 

  • Robich RM, Denlinger DL (2005) Proc Natl Acad Sci USA 102:1512–1517

    Article  CAS  Google Scholar 

  • Sarojini R, Gyananth G (1985) Hormonal Control of Reproduction in the Freshwater prawn Macrobrachium lamerri. J Curr Biosci 2:111–116

    Google Scholar 

  • Sarvala J (1979) Bentic resting periods of pelagic cyclopods in an oligotrophic lake. Holarct Ecol 2:88–100

    Google Scholar 

  • Scharfenberg V (1914) Weitere Untersuchungen an Cladoceren liber die experimentel Lebeeinflussung des Geschlechts und der Dauereibildung. Intern Rev Ges Hydrobiol Biol Suppl 6:1–34

    Article  Google Scholar 

  • Shan RK (1974) Reproduction in laboratory stocks of Pleuroxus (Chydoridae, Cladocera) under influence of photoperiod and light intensity. Intern Rev Ges Hydrobiol 59:643–666

    Article  Google Scholar 

  • Shan RK, Frey DG (1968) Induced interbreeding between two stocks of a Chydorid Cladoceran. Bioscience 18:203–205

    Article  Google Scholar 

  • Shull AF (1943) Origin of diverse strains of an aphid species within a limited area. Pap Mich Acad Sci Arts Lett Pt II Zool 28:425–431

    Google Scholar 

  • Sim C, Denlinger DL (2008) Insulin signaling and FOXO regulate the overwintering diapauses of the mosquito Culex pipiens. Proc Natl Acad Sci USA 105:6777–6781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner DM (1985) Interacting factors in the control of the Crustacean Molt cycle. Am Zool 25:275–284

    Article  CAS  Google Scholar 

  • Slusarczyk M (1995) Predator induced diapause in Daphnia. Ecology 76:1008–1013

    Article  Google Scholar 

  • Smirnov NN (1971) Chydoridae of the World. Nauka Academic Publishers, Leningrad (in Russian)

    Google Scholar 

  • Smyly WJP (1962) Laboratory experiments with stage V copepodids of the freshwater copepod, Cyclops leuckarti Claus, from Windemere and Easthwaite water. Crustaceana 4:273–280

    Article  Google Scholar 

  • Spectrova LV (1984) Recommendations for Artemia culturing and using in aquaculture. VINITI Center, Moscow, p N629px. [in Russian]

    Google Scholar 

  • Spindler KD (1971) Untersuchungen fiber den Einfiup auperer Faktoren auf die Darner der Embryonalentwicklung und der Hantungsrhythuns von Cyclops vicinus. Oecologia 7:342–355

    Article  PubMed  Google Scholar 

  • Steele VJ (1981) The effect of photoperiod on the reproductive cycle of Gammarus lawrencianus Bousfield. J Exp Mar Biol Ecol 53:1–7

    Article  Google Scholar 

  • Stross RG (1965) Termination of summer and winter diapause in Daphnia. Am Zool 15:701

    Google Scholar 

  • Stross RG (1966) Light and temperature requirement for diapause development and release in Daphnia. Ecology 47:368–374

    Article  Google Scholar 

  • Stross RG (1969) Photoperiod control of diapause 142 in Daphnia. II. Induction of winter diapause in the arctic. Biol Bull 136:264–273

    Article  Google Scholar 

  • Stross RG (1971) Photoperiodism and diapause in Daphnia: a strategy for all seasons. Trans Am Microsc Soc 90:110–112

    Google Scholar 

  • Stross RG (1987) Photoperiodism and phased growth in Daphnia populations: coactions in perspective. In: Peters RH, de Bernardi R (eds) Daphnia. Memorie dell’Istituto Italiano di Idrobiologia, vol. 45, pp 413–437

    Google Scholar 

  • Stross RG, Chisholm SW (1975) Density stabilization in arctic populations of Daphnia. Verhandlungen Int Vereiningung Limnol 19:2879–2884

    Google Scholar 

  • Stross RG, Hill JC (1968) Photoperiod control of winter diapause in the fresh water Crustacean, Daphnia. Biol Bull 134:176–198

    Article  Google Scholar 

  • Stross RG, Kansas DA (1969) The reproductive cycle of Daphnia in an arctic pool. Ecology 50:457–460

    Article  Google Scholar 

  • Stuart C, Banta A (1931) Available bacteria and the sex ratio in Moina. Physiol Zool 4:654–696

    Google Scholar 

  • Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin like signals. Science 299:1346–1351

    Article  CAS  PubMed  Google Scholar 

  • Tcherkashina NJA, Karnaushenko IV (1982) Before-embryonic diapause in cray-fish (Astacus leptodactilis cubanicus Bir. et Win.). J Obshej Biologii 43: 687–689 (in Russian)

    Google Scholar 

  • Thiriot A (1978) Zooplankton communities in the West African upwelling area. In: Boje R, Tomezak M (eds) Upwelling ecosystems. Springer, New York

    Google Scholar 

  • Tsukerzis JAM Shashtokas IA (1977) Embryonic diapause in the noble cray-fish (Astacus astacus L.). J Obshej Biologii 38: 929–933 (in Russian)

    Google Scholar 

  • Tunnecliffe A, Lapinski J, McGee B (2005) A Putative LEA protein, but no Trehalosa is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 542:315–321

    Article  Google Scholar 

  • Tyshchenko VP (1977) Fiziologiya fotoperiodizma u nasekomykh (Physiology of Photoperiodism in Insects). Nauka, Leningrad, 156 pp (In Russian)

    Google Scholar 

  • Ulomsky SN (1953) News in ecology of some Mesocyclops. Doklady Acad Sci USSR 90:295–297 (in Russian)

    Google Scholar 

  • Uye S, Kasahara S, Onbe T (1979) Calanoid copepod eggs in sea-bottom muds. IV. Effects of some environmental factors on the hatching of resting eggs. Mar Biol 51:151–156

    Article  Google Scholar 

  • Van den Bosch de Aguilar P (1969) Nouvelles Donnees Morphologiques et Hypothises sur le r61e du Systeme Neuro secreteue chez Daphnia pulex (Crustacea: Cladocera). Ann Soc R Zool Belgique 99:27–44

    Google Scholar 

  • Bertalanfy, L Von (1969) Study on common theory of systems. Progress, Moscow (in Russian)

    Google Scholar 

  • Watson NHF, Smallman BN (1971) The role of photoperiod and temperature in the induction and termination of an arrested development in two species of freshwater cyclopid copepods. Can J Zool 49:855–862

    Article  Google Scholar 

  • Weismann A (1880) Beitrage zur Naturgeschichteder Daphnoiden. Ztschr wiss Zool 33:55–270

    Google Scholar 

  • Westin L, Gydemo R (1986) Influence of light and temperature on reproduction and moulting frequency of the Crayfish Astacus astacus L. Aquaculture 52:43–50

    Article  Google Scholar 

  • Williams JA (1980) The light-response rhythm and seasonal entrainment of the endogenous circadian locomotor rhythm of Talitrus saltator (Crustacea, Amphipoda). J Mar Biol Assoc UK 60:773–785

    Article  Google Scholar 

  • Wilton DP, Smith GC (1985) Ovarian diapause in three geographic strains of Culex pipiens (Diptera, Culicidae). J Med Entomol 22:524–528

    Article  CAS  PubMed  Google Scholar 

  • Winberg GG (1936) Cyclic breeding in Cladocera. Usp Sovrem Biol 5:201–202 (in Russian)

    Google Scholar 

  • Wolkow CA, Kimura KD, Lee MS, Ruvkun G (2000) Regulation of C. elegans life span by insulin like signaling in the nervous system. Science 290:147–150

    Article  CAS  PubMed  Google Scholar 

  • Woltereck R (1911) Ober Veranderung der Sexualitat Bei Daphniden. Int Rev Hydrobiol 4:91–128

    Article  Google Scholar 

  • Zaffagnini F (1987) Reproduction in Daphnia. Memorie dell’Istituto Italiano di Idrobiologia 45:245–284

    Google Scholar 

  • Zaslavsky VA (1988) Insect development. photoperiodic and temperature control. Springer, Berlin, p 187

    Google Scholar 

  • Zeleny N (1905) The relation of the degree of injury to the rate of regeneration. J Exp Zool 2:347–369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor R. Alekseev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alekseev, V.R., Vinogradova, E.B. (2019). Introduction to Dormancy in Aquatic Invertebrates: Mechanism of Induction and Termination, Hormonal and Molecular-Genetic Basis. In: Alekseev, V., Pinel-Alloul, B. (eds) Dormancy in Aquatic Organisms. Theory, Human Use and Modeling. Monographiae Biologicae, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-030-21213-1_2

Download citation

Publish with us

Policies and ethics